

Customer: PeakDeFi
Date: April 14th, 2021

	

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT systems and the
intellectual property of the Customer as well as information about potential
vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
Customer, or it can be disclosed publicly after all vulnerabilities fixed - upon a
decision of the Customer.

Document
Name Smart Contract Code Review and Security Analysis Report for PeakDeFi.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Token, Staking, Governance, Defi
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided Verification, Manual

Review
Repository https://github.com/PeakDeFi/peakdefi-contracts/tree/feature/protected_staking
Commit C14BF25C5CB047A76343EA01F3268D1323B0E0E6
Deployed
contract

Timeline 12 APR 2021 – 14 APR 2021
Changelog 14 APR 2021 – INITIAL AUDIT

26 APR 2021 – SECONDARY AUDIT	

Table of contents

Introduction ... 4	

Scope .. 4	

Executive Summary .. 5	

Severity Definitions .. 7	

AS-IS overview .. 8	

Conclusion .. 12	

Disclaimers ... 13	

 	

Introduction

Hacken OÜ (Consultant) was contracted by PeakDeFi (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of Customer's smart contract and its code
review conducted between April 12th, 2021 – April 14th, 2021.

The secondary review conducted on April 26th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
Repository
File:

ProtectionStaking.sol
We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that are
considered:

Category Check Item
Code review § Reentrancy

§ Ownership Takeover
§ Timestamp Dependence
§ Gas Limit and Loops
§ DoS with (Unexpected) Throw
§ DoS with Block Gas Limit
§ Transaction-Ordering Dependence
§ Style guide violation
§ Costly Loop
§ ERC20 API violation
§ Unchecked external call
§ Unchecked math
§ Unsafe type inference
§ Implicit visibility level
§ Deployment Consistency
§ Repository Consistency
§ Data Consistency

Functional review § Business Logics Review
§ Functionality Checks
§ Access Control & Authorization
§ Escrow manipulation
§ Token Supply manipulation
§ Assets integrity
§ User Balances manipulation
§ Kill-Switch Mechanism
§ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured.	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented in
the Audit overview section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 1 high issue during the audit.

After the second review no vulnerabilities were found.

Notice: the audit scope is limited and not include all files in the repository.
Though, reviewed contracts are secure, we may not guarantee secureness of
contracts that are not in the scope.

Insecure Poor secured Secured Well-secured

You are here

Graph 1. The distribution of vulnerabilities after the first review.

After the second review no vulnerabilities were found.

High
100% High

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can
lead to assets loss or data manipulations.

High
High-level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g., public
access to crucial functions

Medium
Medium-level vulnerabilities are important to fix; however, they
can't lead to assets loss or data manipulations.

Low
Low-level vulnerabilities are mostly related to outdated, unused,
etc. code snippets that can't have a significant impact on
execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can't affect smart contract execution and can be
ignored.

AS-IS overview

ProtectionStaking.sol

Description

Imports

ProtectionStaking has following imports:

• SafeMath.sol – from the OpenZeppelin.

• Ownable.sol – from the OpenZeppelin.

• import "../../lib/ReentrancyGuard.sol";

• import "../../Utils.sol";

• import "../../PeakDeFiFund.sol";

• import "../../PeakDeFiStorage.sol";

• import "../../interfaces/IMiniMeToken.sol";

• import "../IUniswapOracle.sol";

Inheritance

ProtectionStaking is

• Ownable

• ReentrancyGuard.

Usages

ProtectionStaking contract has following usages:

• SafeMath for uint.

• SafeERC20 for PeakToken;

• SafeERC20 for IERC20;

Structs

ProtectionStaking contract has no data structures.

Enums

ProtectionStaking contract has no enums.

Events

ProtectionStaking contract has following events:

• event ClaimCompensation(address investor, uint256 amount, uint256
timestamp);

• event RequestProtection(address investor, uint256 amount, uint256
timestamp);

• event Withdraw(address investor, uint256 amount, uint256 timestamp);

• event ProtectShares(address investor, uint256 amount, uint256
timestamp);

• event WithdrawShares(address investor, uint256 amount, uint256
timestamp);

• event AdminWithdrawToken(address token, uint256 amount, uint256
timestamp);

• event ChangePeakMintCap(uint256 newAmmount);

Modifiers
ProtectionStaking has following modifiers:

• during(PeakDeFiStorage.CyclePhase phase)

• ifNoCompensation()

Fields

ProtectionStaking contract has following fields and constants:

• PeakDeFiFund public fund;

• PeakToken public peakToken;

• address public sharesToken;

• IUniswapOracle public uniswapOracle;

• mapping(address => uint256) public peaks;

• mapping(address => uint256) public shares;

• mapping(address => uint256) public startProtectTimestamp;

• mapping(address => uint256) internal _lastClaimTimestamp;

• mapping(address => uint256) public lastClaimAmount;

• uint256 public mintedPeakTokens;

• uint256 public peakMintCap = 3 * 10 ** 16;

• uint256 internal constant PEAK_PRECISION = 10 ** 8;

• uint256 internal constant USDC_PRECISION = 10 ** 6;

• uint256 internal constant PERCENTS_DECIMALS = 10 ** 20;

Functions
ProtectionStaking has following public functions:

• constructor
• calculateCompensating
• claimCompensation
• requestProtection
• withdraw
• protectShares
• withdrawShares
• setPeakMintCap
• adminWithdrawToken

Audit overview
 Critical

No critical issues were found.

 High – Resolved

• The function adminWithdrawToken provide ability to withdraw any funds
to the smart contract owner.

Fixed before the second audit.

 Medium

No critical issues were found.

 Low

No low severity issues were found.

 Lowest / Code style / Best Practice

No critical issues were found.
	

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools. For the contract, high-level description of functionality was
presented in As-Is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the
reviewed code.

Security engineers found 1 high issue during the audit.

After the second review no vulnerabilities were found.

Notice: the audit scope is limited and not include all files in the repository.
Though, reviewed contracts are secure, we may not guarantee secureness of
contracts that are not in the scope.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the
best industry practices at the date of this report, in relation to cybersecurity
vulnerabilities and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and safety
of the code, bugfree status or any other statements of the contract. While we
have done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only - we recommend
proceeding with several independent audits and a public bug bounty program
to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit can't
guarantee the explicit security of the audited smart contracts.

