

Customer: Nimbus
Date: May 30th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Nimbus.

Approved by Andrew Matiukhin | CTO Hacken OU

Type Swap
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/nimbusplatformorg/nim-

smartcontract/tree/7bda71190cca5d139e15b46a33ca041eb060f38d
(INITIAL AUDIT)
https://github.com/nimbusplatformorg/nim-
smartcontract/commit/6e57eafcdc7b9a08ccb0369bf135a69ce4680be5
(REMEDIATION)

Commit
Deployed
contract

Changelog 26 APR 2021 – INITIAL AUDIT
30 MAY 2021 – REMEDIATION

https://github.com/nimbusplatformorg/nim-smartcontract/tree/7bda71190cca5d139e15b46a33ca041eb060f38d
https://github.com/nimbusplatformorg/nim-smartcontract/tree/7bda71190cca5d139e15b46a33ca041eb060f38d
https://github.com/nimbusplatformorg/nim-smartcontract/commit/6e57eafcdc7b9a08ccb0369bf135a69ce4680be5
https://github.com/nimbusplatformorg/nim-smartcontract/commit/6e57eafcdc7b9a08ccb0369bf135a69ce4680be5

Table of contents

Introduction.. 4

Scope... 4

Executive Summary... 5

Severity Definitions.. 7

Disclaimers.. 10

Introduction

Hacken OÜ (Consultant) was contracted by Nimbus (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This
report presents the findings of the security assessment of
Customer's smart contract and its code review conducted on April
26th, 2021. Remediation conducted on May 30th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository: https://github.com/nimbusplatformorg/nim-smartcontract
Commit: 6e57eafcdc7b9a08ccb0369bf135a69ce4680be5

Files:
 Swaps/Factory.sol
 Swaps/LPRewards.sol
 Swaps/NBU_WETH.sol
 Swaps/Router.sol
We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

https://github.com/nimbusplatformorg/nim-smartcontract

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Data Consistency manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are
secure.

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

As a result of the audit, security engineers found 1 high, 1
medium and 1 low severity issues.

After the second review, the code contains 1 medium issue.

Notices:

1. Description of custom logic is not provided, and we may not
prove correctness of calculation.

Insecure Poor secured Secured Well-secured

You are here

Graph 1. The distribution of vulnerabilities after the audit.

Graph 2. The distribution of vulnerabilities after the second audit.

High
34%

Medium
33%

Low
33%

High Medium Low

Medium
100%

Medium

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Audit overview
 Critical

No critical issues were found.

 High

1. The transfer function may fail if a msg.sender is the
contract address with fallback function. As a result, funds
may be locked.

Contract: NBU_WETH

Functions: withdraw

Recommendation: stop using transfer() or send() and switch
to using call() instead.

Status: Addressed in
6E57EAFCDC7B9A08CCB0369BF135A69CE4680BE5 commit.

contract Vulnerable {
 function withdraw(uint256 amount) external {
 // This forwards 23000 gas, which may not be enough if the recipient
 // is a contract and gas costs change.
 msg.sender.transfer(amount);
 }
}

contract Fixed {
 function withdraw(uint256 amount) external {
 // This forwards all available gas. Be sure to check the return value!
 (bool success,) = msg.sender.call.value(amount)("");
 require(success, "Transfer failed.");
 }
}

 Medium

1. Usage of the custom WETH is not recommended. Such behavior
can mislead users.

 Low

1. The SafeMath library is redundant for compiler versions >=
8.0.0. All operations upon uint data type are checked.

Contracts: all

Recommendation: remove redundant libraries.

Status: Addressed in
6E57EAFCDC7B9A08CCB0369BF135A69CE4680BE5 commit.

Conclusion
Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

As a result of the audit, security engineers found 1 high, 1
medium and 1 low severity issues.

After the second review, the code contains 1 medium issue.

Notices:

1. Description of custom logic is not provided, and we may not
prove correctness of calculation.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only —
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have its vulnerabilities that can lead
to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

