

Customer: NFTB
Date: July 7th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for NFTB - Initial
Audit

Approved by Andrew Matiukhin | CTO Hacken OU

Type Staking, Farming

Platform Ethereum / Solidity

Methods Architecture Review, Functional Testing, Computer-Aided Verification,
Manual Review

Zip archive nftbstaking-main.zip md5: 09275cf2129a5c6f4128909eaca2617f

Timeline 6 JULY 2021 – 7 JULY 2021

Changelog 7 JULY 2021 – INITIAL AUDIT

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Conclusion 10

Disclaimers 10

Introduction
Hacken OÜ (Consultant) was contracted by NFTB (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the findings
of the security assessment of Customer's smart contract and its code review
conducted between July 6th, 2021 – July 7th, 2021.

Scope
The scope of the project is the smart contracts in zip archive:

nftbstaking-main.zip
md5: 09275cf2129a5c6f4128909eaca2617f

CompoundRateKeeper md5: 50fcae57e8708f7759937c980f25a8b0
Factory.sol md5: 0cb4a76be02692d401741ef4f8d45e20
Farming.sol md5: bde7dc4ced02712bc84e09121cf4da8b
Staking.sol md5: 15e21bc15465f59fc84fc7cce1b0d70e

We have scanned these smart contracts for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item

Code review ▪ Reentrancy
▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Asset’s integrity
▪ User Balances manipulation
▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

Executive Summary
According to the assessment, the Customer's smart contracts are secured but
having some issues with gas consumptions and centralization.	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

Security engineers found 1 medium and 2 informational issues during the first
review.

Graph 1. The distribution of vulnerabilities after the first review.

	

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data manipulations.

High High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

Audit overview
 Critical

No Critical severity issues were found.

 High

No High severity issues were found.

 Medium

 Vulnerability: Centralization

In any period of time the owner could set rewards per block to any
amount, even 0. If a user didn’t do updateRewards, all their rewards
would be burned.
Also in the Staking.setInterestRate. Owner could change it any time
and no one will be able to react to changes.

Recommendation: Please consider moving ownership to a timelock or
governance contract.

Lines: Farming.sol#99-102
function updateRewardPerBlock(uint256 _newRewardPerBlock) external
onlyOwner {
 rewardPerBlock = _newRewardPerBlock;
 _updateCumulativeSum();
}

Lines: Staking.sol#177-182
function setInterestRate(uint256 _newInterestRate) external override
onlyOwner {
 require(_newInterestRate <= 76036763190083298292, "[E-202]-Can't
be more than 1000%.");

 updateCompoundRate();
 interestRate = _newInterestRate;
}

 Low

No Low severity issues were found.

 Lowest / Code style / Best Practice

1. Vulnerability: State variable should be immutable

State variable which initializes in the constructor and never changes
its value should be declared immutable to save gas.

Lines: Farming.sol#10-11
IERC20 public stakeToken;
IERC20 public distributionToken;

Lines: Staking.sol#12-13
CompoundRateKeeper public compRateKeeper;
IERC20 public token;

2. Vulnerability: Public function that could be declared external

public functions that are never called by the contract should be
declared external to save gas.

Lines: Staking.sol#154
function getBalance() public view override returns (uint256) {

	

Conclusion
Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

Security engineers found 1 medium and 2 informational issues during the first
review.

Disclaimers
Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and
safety of the code, bugfree status or any other statements of the contract.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only
- we recommend proceeding with several independent audits and a public bug
bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

