

Customer: XP Network
Date: June 6th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for XP
Network TGE – initial audit.

Approved by Andrew Matiukhin | CTO Hacken OU

Type Vesting

Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/VKint/tge
Commit 4e8ce852b40dd91a4537d6630c5ab137ab62d129(commit for initial audit)

3b1bdf2a6c43239c2d4a586a876d4ecc356db703(commit for remediation
check)

Changelog 23 JUNE 2021 – INITIAL AUDIT
05 JULY 2021 – REMEDIATION CHECK

Table of contents

Document.. 2

Table of contents... 3

Introduction.. 4

Scope... 4

Executive Summary... 6

Severity Definitions.. 7

Disclaimers.. 11

Introduction

Hacken OÜ (Consultant) was contracted by XP Network (Customer)
to conduct a Smart Contract Code Review and Security Analysis.
This report presents the findings of the security assessment of
Customer's smart contract and its code review conducted on June
23rd, 2021.
Remediation check was done 6th of June 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository: https://github.com/VKint/tge
Commit: 4e8ce852b40dd91a4537d6630c5ab137ab62d129(Initial audit commit)
 3b1bdf2a6c43239c2d4a586a876d4ecc356db703(Remediation check commit)

Files:
 contracts/Migration.sol
 contracts/PrivateTokenVesting.sol
 contracts/TokenVesting.sol
 contracts/XPNET.sol

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Data Consistency manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts is
secure1.

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. All found issues can be found in the Audit overview
section.

As a result of the audit, security engineers 1 high, 3 medium and
1 low severity issues.

As a result of the remediation check, all issues were addressed.

Notice: test coverage of reviewed contracts is low. We recommend
covering as much cases as possible.

Graph 1. The distribution of vulnerabilities after the audit.

1 For more detail please read Audit Overview.

High
20%

Medium
60%

Low
20%

High Medium Low

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Audit overview
 Critical

No critical issues were found.

 High

1. The contract does not guarantee that tokens will be received
by beneficiaries. Owner can revoke their permissions or
withdraw all tokens from the contract. Also, no tokens
guaranteed when new beneficiary is created.

Contracts: TokenVesting.sol, PrivateTokenVesting.sol

Recommendation: forbid withdrawing all tokens and do not
revoke beneficiaries; ensure that `_amount` of tokens is
transferred to the contract when new beneficiary is created.

Status: Addressed, client provided the official letter to
confirm that these features are required in order to remain
compatible with KYC/AML and other legal requirements. For
enhanced security client confirm that the owner account shall
be a multisig address.

 Medium

1. `_start`, `_cliff` and `_duration` values are not validated.
_vestedAmount can always fail if start is greater than cliff.

Contracts: PrivateTokenVesting.sol

Function: constructor

Recommendation: validate input paramanters.

Status: Addressed.

2. `_start` and `_cliff` parameters are not validated. This may
lead to fails of the `_vestedAmount` function

Contracts: TokenVesting.sol

Function: createBeneficiary

Recommendation: validate input paramanters.

Status: Addressed.

3. `cliff` parameters is redundant and can be removed. `start`
parameter can be simply increased for the corresponding value
and contracts will behave the same way,

Contracts: TokenVesting.sol, PrivateTokenVesting.sol

Recommendation: remove redundant parameters.

Status: Addressed.

 Low

1. The code contains commented out fragments.

Contracts: TokenVesting.sol, PrivateTokenVesting.sol

Recommendation: remove commented out code.

Status: Addressed.

Conclusion
Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

As a result of the audit, security engineers 1 high, 3 medium and
1 low severity issues.

As a result of the remediation check, all issues were addressed.

Notice: test coverage of reviewed contracts is low. We recommend
covering as much cases as possible.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only —
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have its vulnerabilities that can lead
to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

