

Customer: Centrality
Date: September 29th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed - upon a decision of the Customer.

Document
Name Smart Contract Code Review and Security Analysis Report for

Centrality – Audit report
Approved by Andrew Matiukhin | CTO Hacken OU
Type Bridge validator
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Github https://github.com/cennznet/bridge-

contracts/tree/047cecbfc86f10cdc3310c6ebb399de2e7c737a3
Timeline 24 September 2021 – 7 October 2021
Changelog 24 September 2021 - 29 September 2021 – Initial Audit

29 September 2021 – 7 October 2021 – Remediation check

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 7

Audit overview 8

Conclusion 11

Disclaimers 12

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Centrality (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of Customer's smart contract and its
code review conducted on September 29th, 2021.

Remediation check was conducted – October 7th, 2021

Scope

The scope of the project is the smart contracts:
Repository: https://github.com/cennznet/bridge-contracts
Last commit: 047cecbfc86f10cdc3310c6ebb399de2e7c737a3
Contracts:
contracts/CENNZnetBridge.sol
contracts/ERC20Peg.sol

We have scanned these smart contracts for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

www.hacken.io

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Asset’s integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

www.hacken.io

Executive Summary

According to the assessment, the Customer's smart contracts are Well-secured.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

Security engineers found 6 critical, 2 medium, 3 low and 1 informational
issues during the first review.

There are no vulnerabilities found after remediation check.

Insecure Poor secured Secured Well-secured

You are here

www.hacken.io

Severity Definitions

Risk Level Description
Critical Critical vulnerabilities are usually straightforward to

exploit and can lead to assets loss or data
manipulations.

High High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

www.hacken.io

Audit overview

 Critical

1. RESOLVED Vulnerability: Event can be submitted without any
verification.

CENNZnetBridge.sol, verifyMessage()
If the message is passed with proof.validatorSetId which is not
registered yet or is cleaned (contains empty array of validators) the
message is not validated at all. The reason is that the
acceptanceTreshold is set to 0 in case of zero length of the
validators array. Thus the event can be passed without any proof.
Since the method is public, everyone can call it as a workaround.

Recommendation: Add checks for the existence of the validators for
the chosen set of validators.

2. RESOLVED Vulnerability: There is no way to override or exclude
compromised validators.

Both function setValidators() and forceSetValidators() can only add
new validators and cannot change existing once - both functions have
conditions for validatorSetId to be greater than
activeValidatorSetId. Thus in the case of validators set compromised
there is no way to change or deactivate it.
Furthermore - function verifyMessage() does not check or validate the
validatorsSetId passed as parameter and there is no connection to
activeValidatorSet.
Thus, the bridge contract will be compromised if validators are
compromised.

Recommendation: Add ability to exclude compromised validators.

3. RESOLVED Vulnerability: Anyone can withdraw funds from the bridge
contract.

Function setValidators() has no restriction to the caller (it is
public for anyone) and since empty validators list can be passed
(which will pass verifyMessage() function) - anyone can call the
function and withdraw all collected currency.

Recommendation: Provide restrictions for the caller and for the array
of validators.

4. RESOLVED Vulnerability: Any token can be freely withdrawn.

www.hacken.io

ERC20Peg.sol, withdraw()
Based on the other issues for now any user can freely withdraw any
amount of the token from the lock contract by manipulating with the
array of validators.

Recommendation: The issue depends on other issues with restriction
for validator’s sets, restrictions for methods calls, etc. The
overall recommendation is to rebuild the validation system.

5. RESOLVED Vulnerability: Any validators array can be set.

Since there are no restrictions for the caller or for the array of
validators and since passed validators verify their own messages -
anyone can set any validators and use the bridge on its own. Thus
regular users can be manipulated in order to send funds for malicious
actors.

Recommendation: Provide restrictions for the caller and for the array
of validators.

6. RESOLVED Vulnerability: No restrictions on the message.

There are no restriction on the message passed to the bridge
contract. So, since anyone can call verifyMessage() function with any
set of validators and signatures - anyone can manipulate storage in
order to prevent correct events to be passed. So, for example, if
event N should be passed to the bridge, malicious actor can send
transaction with more gas in order to override eventsId[N] before the
correct transaction. Thus user’s tx will constantly fail

Recommendation: The issue depends on other issues with restriction
for validator’s sets, restrictions for methods calls, etc. The
overall recommendation is to rebuild the validation system.

 High

No High severity issues were found.

 Medium

1. RESOLVED Vulnerability: There are no restrictions for zero address of
the receiver.

ERC20Peg.sol, deposit(), withdraw()
Any token can be maliciously (or mistakenly) sent to zero address.

Recommendation: Provide restrictions

www.hacken.io

2. UNRESOLVED Vulnerability: There is no ability to pause CENNZ

deposits.

There is activate function but no pause function.

Recommendation: Verify the functionality

 Low

1. RESOLVED Vulnerability: Set variables as constants.

CENNZnetBridge.sol, verificationFee, THRESHOLD
ERC20Peg.sol, ETH_RESERVED_TOKEN_ADDRESS
Variables are never changed and are set just once. Use public
constants or add setters for these variables.

Recommendation: Use constants.

2. RESOLVED Vulnerability: Use local storage for gas saving.

CENNZnetBridge.sol, verifyMessage()
The function contains multiple calls to validators[validatorsSetId]
thus it creates a lot of calls to the storage. Use local memory
variable to copy validators array just once, thus all other calls to
the array will consume less gas. Since no storage change for the
array is performed in this function it will work for gas savings.

Recommendation: Use memory array to decrease gas usage.

3. RESOLVED Vulnerability: Use SafeERC20 library.

ERC20Peg.sol, deposit(), withdraw()
Since there are no restrictions for tokens use SafeERC20 library
(safeTransfer and safeTransferFrom) for tokens in order to prevent
fails for modified ERC20 tokens (like USDT).

Recommendation: Use SafeERC20 library.

 Lowest / Code style / Best Practice
1. RESOLVED Vulnerability: Use public constant for the address.

ERC20Peg.sol, deposit()
For better readability and code quality, move token address to the
public constant.

Recommendation: Use public constant.

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

Security engineers found 6 critical, 1 medium, 3 low and 1 informational
issues during the first review.

There are no vulnerabilities found after remediation check.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and
safety of the code, bugfree status or any other statements of the contract.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only
- we recommend proceeding with several independent audits and a public bug
bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

