

Customer: AutoMatic
Date: October 1st, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
AutoMatic.

Approved by Andrew Matiukhin | CTO Hacken OU

Type Pools; Vaults

Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Zip archive automatic-contracts-audit-v2.zip
Technical
Documentation

NO

JS tests NO

Website AUTOMATIC.NETWORK
Timeline 30 AUGUST 2021 – 01 OCTOBER 2021
Changelog 17 SEPTEMBER 2021 – INITIAL AUDIT

01 OCTOBER 2021 – SECOND REVIEW

	

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 8

Audit overview 9

Conclusion 11

Disclaimers 12

	 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by AutoMatic (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between August 30th, 2021 - September 17th, 2021. The
second code review conducted on October 1st, 2021.

Scope

The scope of the project is smart contracts in the repository:
Zip archive:

automatic-contracts-audit-v2.zip
md5 Hash:
 1c1827c244153a52831df31b098b159e
Technical Documentation: No
JS tests: No
Contracts:

pools\Auto.sol
pools\AutoMaticVaultQuickToQuick.sol
pools\AutoMaticVaultToLPv3.sol
pools\AutoMaticVaultToMATIv3.sol
pools\AutoStakingPool.sol
pools\FeeManager.sol
pools\QuickLPStrategyV3.sol
pools\StratManager.sol
vaults\AutoMaticVaultQuickToQuickv2.sol
vaults\AutoMaticVaultToLPv4.sol
vaults\AutoMaticVaultToQuickv4.sol
vaults\AutoStakingPoolv2.sol
vaults\QuickLPStrategyv4.sol

	

www.hacken.io

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence

▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence

▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation

▪ Unchecked external call
▪ Unchecked math

▪ Unsafe type inference
▪ Implicit visibility level

▪ Deployment Consistency
▪ Repository Consistency

▪ Data Consistency

Functional review

▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization

▪ Escrow manipulation
▪ Token Supply manipulation

▪ Assets integrity
▪ User Balances manipulation

▪ Data Consistency manipulation
▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

	

www.hacken.io

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured. 	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 2 medium and 7 low severity
issues.

After the second review security engineers found only 1 low severity issue.

	

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

	

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High
High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

	

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

1. Parts of contracts logic was not provided for audit

Some parts of contracts logic, like @openzeppelin contracts version,
interfaces declaration, StratManager and FeeManager contracts were not
provided for audit. Without those parts automatic checking is very
limited as well as security verification could not be done because of
the hidden logic.

Recommendation: Please consider providing the entire scope for audit.

Fixed before the second review

2. Dangerous usage of tx.origin

tx.origin-based protection can be abused by a malicious contract if a
legitimate user interacts with the malicious contract.

Exploit Example:
contract TxOrigin {
 address owner = msg.sender;

 function bug() {
 require(tx.origin == owner);
 }

Bob is the owner of TxOrigin. Bob calls Eve's contract. Eve's contract calls
TxOrigin and bypasses the tx.origin protection.

Recommendation: Do not use tx.origin for authorization.

Fixed before the second review

 Low

1. Incorrect solidity version

While immutable keyword was introduced only since solidity version
0.6.5, it’s incorrect to specify pragma solidity version as >0.6.0,
because “solc” with version 0.6.24, for example, would not be able to
compile it. Also, contracts aren’t using the visibility declaration
for constructors, which was announced only since version 0.7.0.

www.hacken.io

Recommendation: Please specify the correct solidity version in the
pragma header.

Fixed before the second review

2. Missing event for changing “devAllocation”

Changing critical values should be followed by the event emitting for
better tracking off-chain.

Recommendation: Please emit events on the critical values changing.

Fixed before the second review

3. Missing event for changing “devWallet”

Changing critical values should be followed by the event emitting for
better tracking off-chain.

Recommendation: Please emit events on the critical values changing.

Fixed before the second review

4. Missing event for “setMinter”

Changing critical values should be followed by the event emitting for
better tracking off-chain.

Recommendation: Please emit events on the critical values changing.

Fixed before the second review

5. Missing event for changing “devAllocation”

Changing critical values should be followed by the event emitting for
better tracking off-chain.

Recommendation: Please emit events on the critical values changing.

Fixed before the second review

6. State variables that could be declared constant

Constant state variables should be declared constant to save gas.

Recommendation: Add the constant attributes to state variables that
never change.

7. Boolean equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Recommendation: Remove the equality to the boolean constant.

Fixed before the second review

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 2 medium and 7 low severity
issues.

After the second review security engineers found only 1 low severity issue.

	

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

