

Customer: DAFI Protocol
Date: October 28th, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
DAFI Protocol.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Staking
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/DAFIProtocol/dDAFI
Commit 780899034ef4966df8752a6030dbe7b3bcbd4bb1
Technical
Documentation

YES

JS tests NO
Website dafiprotocol.io
Timeline 24 OCTOBER 2021 – 28 OCTOBER 2021
Changelog 26 OCTOBER 2021 – INITIAL AUDIT

28 OCTOBER 2021 – SECOND REVIEW

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 8

Audit overview 9

Conclusion 11

Disclaimers 12

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by DAFI Protocol (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between October 24th, 2021 - October 26th, 2021.

Second review conducted on October 28th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/DAFIProtocol/dDAFI/tree/main/contracts/V2
Commit:

780899034ef4966df8752a6030dbe7b3bcbd4bb1
Technical Documentation: Yes (https://docs.dafiprotocol.io/super-
staking/super-staking-v2)
JS tests: No
Contracts:

interfaces\INetworkDemand.sol
interfaces\IPriceFeeds.sol
interfaces\IRebaseEngine.sol
interfaces\IStakingManager.sol
interfaces\ITVLFeeds.sol
network demand\NetworkDemand.sol
network demand\PriceFeeds.sol
network demand\TVLFeeds.sol
rebase engine\RebaseEngine.sol
StakingDatabase.sol
StakingManagerV2.sol
TokenPool.sol

www.hacken.io

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence

▪ Style guide violation
▪ Costly Loop

▪ ERC20 API violation
▪ Unchecked external call

▪ Unchecked math
▪ Unsafe type inference

▪ Implicit visibility level
▪ Deployment Consistency

▪ Repository Consistency
▪ Data Consistency

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation

▪ Token Supply manipulation
▪ Assets integrity

▪ User Balances manipulation
▪ Data Consistency manipulation

▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

	

www.hacken.io

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured. 	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 7 low severity issues.

As a result of the second review, security engineers found 6 low severity
issues.

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

	

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

No medium severity issues were found.

 Low

1. Too many digits

Literals with many digits are difficult to read and review.

Contracts: network demand/NetworkDemand.sol

Constants: SIX_DECIMALS, EIGHT_DECIMALS, SEVEN_DECIMALS, TWO_DECIMALS

Recommendation: Please use scientific notation and ether units suffix
when it’s possible. (ex.: uint32 constant EIGHT_DECIMALS = 1e8;)

2. Implicit visibility declaration

State variables that don’t have explicitly declared visibility are
implicitly set as internal.

Contracts: StakingManagerV2.sol

Variables: STAKING_ON, UNSTAKING_ON, INITIALIZED

Recommendation: Please always declare variables visibility explicitly
to avoid misunderstandings.

3. Conformance to Solidity naming conventions

Solidity defines a naming convention that should be followed.

Contracts: StakingManagerV2.sol

Events: STAKED, UNSTAKED, REWARD_DISBURSED

Variables: STAKING_ON, UNSTAKING_ON, INITIALIZED

Recommendation: Follow the Solidity naming convention.

4. Incorrect contract name

The contract in the file StakingManagerV2.sol is named
StakingManagerV1, which could lead to many confusions. Especially

www.hacken.io

while there is a StakingManagerV1.sol file which is
actually out of the scope of the current audit.

Contracts: StakingManagerV2.sol

Recommendation: Please name the contract correctly.

 Status: Fixed.

5. Not finished code

Some contracts have TODOs in the code which means some parts of the
business logic are not implemented yet.

Contracts: TVLFeeds.sol

Recommendation: Please finish all TODOs.

6. No way to see rewards

There is no function for users to see their current rewards. It’s
more clear, open and informative for users to have the ability to see
the current unclaimed earned rewards.

Contracts: StakingManagerV2.sol

Recommendation: Please add a function for users to see their current
rewards balance.

7. Magic numbers

StakingManagerV1 contract is using a magic number in the code on line
#212 (100000000) to calculate the Demand Factor.

Contracts: StakingManagerV2.sol

Function: _computeAndDisburseRewards

Recommendation: Please use constants defined in the NetworkDemand
contract.

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 7 low severity issues.

As a result of the second review, security engineers found 6 low severity
issues.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

