SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Mate
Date: October 20", 2021

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

E

HACHEN

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Smart Contract Code Review and Security Analysis Report for
Client.

Andrew Matiukhin | CTO Hacken OU

ERC20 token; Staking

Ethereum / Solidity

Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review
https://github.com/usemate/mate-contracts
8d013762e0373e2bb3d0edc4fc606b9bd4daacbe

NO

YES

https://usemate.com

13 OCTOBER 2021 - 20 OCTOBER 2021
20 OCTOBER 2021 - INITIAL AUDIT

O
o
N
o
3
)
3
ct

www. hacken.io

I I I I I Hacken 0U
Parda 4, Kesklinn, Tallinn,

10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

HACHEN

Table of contents

Introduction

Scope

Executive Summary
Severity Definitions

Audit overview

o N O £ £

Conclusion 1

Disclaimers 11

www. hacken.io

‘ Hacken 0U
: Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,

‘ Kesklinna, Estonia
support@hacken.io

Introduction

Hacken 00 (Consultant) was contracted by Mate (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the findings
of the security assessment of the Customer's smart contract and its code
review conducted between October 13, 2021 - October 20, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:
https://github.com/usemate/mate-contracts
Commit:
8d013762e0373e2bb3d0edc4fc606b9bd4daachbe
Technical Documentation: No
JS tests: Yes, included
Contracts:
core/FeeManager.sol
core/MateCore. sol
core/MateMaker.sol
core/UniswapHandler.sol
core/StakingPool . sol
core/0rderBook. sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Code review * Reentrancy

®= Qwnership Takeover

®= Timestamp Dependence

®= Gas Limit and Loops

* DoS with (Unexpected) Throw
®= DoS with Block Gas Limit

®" Transaction-Ordering Dependence
= Style guide violation

®= Costly Loop

®= ERC20 API violation

= Unchecked external call

= Unchecked math

®= Unsafe type inference

= Implicit visibility level

®= Deployment Consistency

= Repository Consistency

= Data Consistency

www. hacken.io

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Functional review
Business Logics Review

" Functionality Checks

= Access Control & Authorization
®= Escrow manipulation

= Token Supply manipulation

" Assets integrity

= User Balances manipulation

= Data Consistency manipulation
®= Kill-Switch Mechanism

®= Qperation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secured.

Insecure Poor secured Secured Well-secured
You are here

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 1 medium and 2 low severity
issues.

www. hacken.io

Hacken 00

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

HACKHEN
Graph 1. The distribution of vulnerabilities after the audit.
Medium
33,3%
Low
66,7%

www. hacken.io

|LLLL

HACHEN

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Severity Definitions

Critical

Medium

Low

Critical vulnerabilities are usually straightforward to
exploit and <can lead to assets 1loss or data
manipulations.

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have

a significant impact on execution

www. hacken.io

‘ Hacken 0U
: Parda 4, Kesklinn, Tallinn,
[| 10151 Harju Maakond, Eesti,
‘ Kesklinna, Estonia

support@hacken.io

Audit overview

mm mmCritical
No critical issues were found.
High
No high severity issues were found.
m = Medium
Tests could not be run

First of all, npm install doesn’t work as-is.

ERESOLVE
could not resolve

While resolving:
Found: @
node_modules/@nomiclabs/hardhat-ethers
dev @" " from the root project

Could not resolve dependency:
dev @" " from the root project

Conflicting peer dependency: @
node_modules/@nomiclabs/hardhat-ethers
@" " from
node_modules/@nomiclabs/hardhat-waffle
dev @" " from the root project

Fix the upstream dependency conflict, or retry
this command with --force, or --legacy-peer-deps
to accept an incorrect (and potentially broken) dependency resolution.

See /Users/helios/.npm/eresolve-report.txt for a full report.

After fixing package.json and successfully run npm install, we’ve
received an error located at hardhat.config. json

For more info go to https://hardhat.org/HH8 or run Hardhat with --show-stack-traces

Recommendation: Please make sure all tests could be executed and there
is a script or description of how to run them. Also, please make sure
your tests are cover at least 95% of code branches.

www. hacken.io

1.

2.

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

m Low
Block timestamp

Dangerous usage of block.timestamp. block.timestamp can be manipulated
by miners. Some contracts are fully related on the block.timestamp

Contracts: UniswapHandler.sol, OrderBook.sol, MateCore.sol

Recommendation: Please consider relying on the block.number instead
A public function that could be declared external

public functions that are never called by the contract should be
declared external to save gas.

Contracts: StakingPool.sol, OrderBook.sol
Functions: enter, leave, getOrder

Recommendation: Use the external attribute for functions never called
from the contract.

www. hacken.io

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 1 medium and 2 low severity
issues.

www. hacken.io

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Disclaimers
Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

www. hacken.io

