

Customer: Polkamarkets
Date: October 6th, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Polkamarkets.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Market prediction game
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/bepronetwork/bepro-

js/tree/feature/prediction-markets-hacken-changes
Commit 3CF69D00A0261E986FC312F8307E4BA468769397
Technical
Documentation

NO

JS tests YES
Timeline 17 SEPTEMBER 2021 – 06 OCTOBER 2021
Changelog 28 SEPTEMBER 2021 – INITIAL AUDIT

06 OCTIBER 2021 - SECOND REVIEW

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Conclusion 10

Disclaimers 12

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Polkamarkets (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between September 17th, 2021 - September 28th, 2021.

The second code review conducted on October 6th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/bepronetwork/bepro-js/tree/feature/prediction-
markets-hacken-changes
Commit:
 3cf69d00a0261e986fc312f8307e4ba468769397
Technical Documentation: No
JS tests: Yes
Contracts:
 PredictionMarket.sol
 RealitioERC20.sol	

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence
▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence

▪ Style guide violation
▪ Costly Loop

▪ ERC20 API violation
▪ Unchecked external call

▪ Unchecked math
▪ Unsafe type inference

▪ Implicit visibility level
▪ Deployment Consistency

▪ Repository Consistency
▪ Data Consistency

www.hacken.io

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation

▪ Assets integrity
▪ User Balances manipulation

▪ Data Consistency manipulation
▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured.	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 1 medium and 1 low severity
issue.

After the second review security engineers found 1 low severity issue.

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

Tests could not be run

Recommendation: Please make sure tests are able to be executed and
test coverage is at least 95% for branches.

Fixed before the second review

 Low

A public function that could be declared external

public functions that are never called by the contract should be
declared external to save gas.

Recommendation: Use the external attribute for functions never called
from the contract.

Lines: RealitioERC20.sol#280
function setToken(IERC20 _token)
public

Lines: RealitioERC20.sol#333
function createTemplateAndAskQuestion(
 string memory content,
 string memory question, address arbitrator, uint32 timeout, uint32
opening_ts, uint256 nonce
)
 // stateNotCreated is enforced by the internal _askQuestion
public returns (bytes32) {

Lines: RealitioERC20.sol#379
function askQuestionERC20(uint256 template_id, string memory question,
address arbitrator, uint32 timeout, uint32 opening_ts, uint256 nonce,
uint256 tokens)
 // stateNotCreated is enforced by the internal _askQuestion
public returns (bytes32) {

www.hacken.io

Lines: RealitioERC20.sol#818
function claimMultipleAndWithdrawBalance(
 bytes32[] memory question_ids, uint256[] memory lengths,
 bytes32[] memory hist_hashes, address[] memory addrs, uint256[] memory
bonds, bytes32[] memory answers
)
 stateAny() // The finalization checks are done in the claimWinnings f
public {

Lines: RealitioERC20.sol#849
function getContentHash(bytes32 question_id)
public view returns(bytes32) {

Lines: RealitioERC20.sol#856
function getArbitrator(bytes32 question_id)
public view returns(address) {

Lines: RealitioERC20.sol#863
function getOpeningTS(bytes32 question_id)
public view returns(uint32) {

Lines: RealitioERC20.sol#870
function getTimeout(bytes32 question_id)
public view returns(uint32) {

Lines: RealitioERC20.sol#877
function getFinalizeTS(bytes32 question_id)
public view returns(uint32) {

Lines: RealitioERC20.sol#884
function isPendingArbitration(bytes32 question_id)
public view returns(bool) {

Lines: RealitioERC20.sol#892
function getBounty(bytes32 question_id)
public view returns(uint256) {

Lines: RealitioERC20.sol#899
function getBestAnswer(bytes32 question_id)
public view returns(bytes32) {

Lines: RealitioERC20.sol#907
function getHistoryHash(bytes32 question_id)
public view returns(bytes32) {

Lines: RealitioERC20.sol#914

www.hacken.io

function getBond(bytes32 question_id)
public view returns(uint256) {

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 1 medium and 1 low severity
issue.

After the second review security engineers found 1 low severity issue.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

