

Customer: Premia
Date: September 9th, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for Client.

Approved by Andrew Matiukhin | CTO Hacken OU

Type Options Platrform

Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/PremiaFinance/premia-contracts-private
Commit dfc07ca0c6d6c1f76025a646a8616bcf26dc5d0b
Technical
Documentation

YES

JS tests YES
Timeline 02 AUGUST 2021 – 18 AUGUST 2021
Changelog 11 AUGUST 2021 – INITIAL AUDIT

09 SEPTEMBER 2021 – SECOND REVIEW

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 8

Audit overview 9

Conclusion 11

Disclaimers 12

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Premia (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the findings
of the security assessment of the Customer's smart contract and its code
review conducted between August 2nd, 2021 - August 11th, 2021.

Additional review was done in period September 6th, 2021 – September 9th, 2021

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/PremiaFinance/premia-contracts-private
Commit:
 dfc07ca0c6d6c1f76025a646a8616bcf26dc5d0b
Technical Documentation: Yes
JS tests: Yes
Contracts:

core/IProxyManager.sol
core/Premia.sol
core/ProxyManager.sol
core/ProxyManagerStorage.sol
interface/IFlashLoanReceiver.sol
interface/IKeeperCompatible.sol
interface/INewPremiaFeeDiscount.sol
interface/IPremiaFeeDiscount.sol
interface/IPremiaMaker.sol
interface/IPremiaOption.sol
interface/IPriceOracleGetter.sol
keeper/AutoExerciseKeeper.sol
keeper/PremiaMakerKeeper.sol
keeper/ProcessExpiredKeeper.sol
libraries/ABDKMath64x64Token.sol
libraries/OptionMath.sol
mining/IPremiaMining.sol
mining/PremiaMining.sol
mining/PremiaMiningProxy.sol
mining/PremiaMiningStorage.sol
oracle/IVolatilitySurfaceOracle.sol
oracle/VolatilitySurfaceOracle.sol
oracle/VolatilitySurfaceOracleStorage.sol
pool/IPool.sol
pool/IPoolBase.sol
pool/IPoolEvents.sol
pool/IPoolExercise.sol
pool/IPoolIO.sol
pool/IPoolView.sol
pool/IPoolWrite.sol
pool/PoolBase.sol
pool/PoolExercise.sol
pool/PoolIO.sol

www.hacken.io

pool/PoolProxy.sol
pool/PoolStorage.sol
pool/PoolSwap.sol
pool/PoolView.sol
pool/PoolWrite.sol
vesting/PremiaMultiVesting.sol
vesting/PremiaVesting.sol
vesting/PremiaVestingCancellable.sol
PremiaDevFund.sol
PremiaErc20.sol
PremiaFeeDiscount.sol
PremiaMaker.sol
PremiaMakerStorage.sol
PremiaStaking.sol
PremiaVoteProxy.sol
ProxyUpgradeableOwnable.sol
ProxyUpgradeableOwnableStorage.sol
WETH.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

www.hacken.io

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Data Consistency manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secured, but
it’s possible to use some assets in the Flash Loan arbitrage attack. Also,
there are some tests failing.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 2 medium and 2 low severity
issues.

After the second review security engineers found 1 medium and 2 low severity
issues.

Notice:

The PremiaStaking contract contains token assets which could be used in the
FlashLoan attack which could lead to money loss.

Notice 2:

Failing tests could show real issues with business logic. Please check them.

Notice 3:

A lot of TODOs could mean that contracts are not done yet.

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

1. Possible Flash Loan arbitrage attack

It is possible that xPremia token (PremiaStaking) could be used in the
Flash Loan arbitrage attack. As soon as it traded on any DEX, it could
be “borrowed”, then “leave” method called, to receive some premia which
could be used on other DEX where traded.

This is not direct contract vulnerability, it’s rather a possibility
to use produced and cross-changed tokens to receive those for free in
the same transaction trade those, receive rewards and return tokens
back.

Recommendation: Please consider either not trading xPremia on DEXes or
create a timelock for at least one block between taking premia and
minting xPremia, and also between taking xPremia and sending premia
back.

2. Not all tests succeed

There are bunch of tests provided with contracts. In total 288 tests.
But, unfortunately, 1 test is failing and 9 of them aren’t finished
and marked as todo.

After the second review: We’ve found that now 9 of test are failing
while 9 more are still in pending state.

Recommendation: We’d recommend checking the failing test and also
complete the pending ones. One more, as far as your code coverage is
about 85%, which is not bad, but we recommend to add more test cases
to cover at least 95% of the code.

www.hacken.io

 Low

1. TODOs in the code

Having a bunch of TODOs in the code could mean there is some business
or other logic unimplemented. Right now, we’ve discovered 10 TODOs in
the code.

Recommendation: Please consider implementing unimplemented logic, re-
check places with TODO marks and remove those.

2. A public function that could be declared external

public functions that are never called by the contract should be
declared external to save gas.

Lines: keeper/AutoExerciseKeeper.sol#45
function addPriceOrder(AutoExerciseOrder memory order) public {

Lines: keeper/AutoExerciseKeeper.sol#55
function addExpirationOrder(AutoExerciseOrder memory order) public {

Lines: keeper/AutoExerciseKeeper.sol#67
function removeOrder(AutoExerciseOrder memory order) public {

Lines: keeper/AutoExerciseKeeper.sol#78

function cleanupExpiredOrders(uint256 expiration) public {

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 2 medium and 2 low severity
issues.

After the second review security engineers found 1 medium and 2 low severity
issues.

Notice:

The PremiaStaking contract contains token assets which could be used in the
FlashLoan attack which could lead to money loss.

Notice 2:

Failing tests could show real issues with business logic. Please check them.

Notice 3:

A lot of TODOs could mean that contracts are not done yet.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

