

Customer: PureFi
Date: October 11th, 2021

	

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
PureFi.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Vesting, Farming, Token
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository 1.https://github.com/purefiprotocol/token

2.https://github.com/purefiprotocol/eth-bsc-swap-contracts

3. https://github.com/purefiprotocol/eth-bsc-swap-contracts

Commit 1. bbb66a17e4f452d3aa999fabb82a432e9b56d0be

2. d010f53f859a589a31a7d9b55104f77ab0df87d1

3. 49c7ef02654ecadfb877e7330f4876820fe27045

Timeline 22 JULY 2021 - 11 OCTOBER 2021
Changelog 11 OCTOBER 2021 – INITIAL AUDIT

www.hacken.io

Table of contents

Introduction ... 4	
Scope .. 4

Executive Summary .. 5

Severity Definitions ... 7

Audit overview ... 8

Conclusion ... 9

Disclaimers ... 10

	

	 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by PureFi (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the findings
of the security assessment of Customer's smart contract and its code review
conducted between July 22nd, 2021 - October 11th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository 1: https://github.com/purefiprotocol/token
Commit 1: bbb66a17e4f452d3aa999fabb82a432e9b56d0be
Files:
 contracts/PureFiPaymentPlan.sol
 contracts/PureFiLinearPaymentPlan.sol
 contracts/PureFiFixedDatePaymentPlan.sol
 contracts/PureFiFarming.sol

contracts/PureFiToken.sol
 contracts/PureFiBotProtection.sol

Repository 2: https://github.com/purefiprotocol/eth-bsc-swap-contracts
Commit 2: d010f53f859a589a31a7d9b55104f77ab0df87d1
Files:
 contracts/bep20/BEP20TokenImplementation.sol
 contracts/bep20/PureFiBotProtection.sol

Repository 3: https://github.com/purefiprotocol/eth-bsc-swap-contracts
Commit 3: 49c7ef02654ecadfb877e7330f4876820fe27045
Files:
 contracts/ETHSwapAgentImpl.sol
 contracts/BSCSwapAgentImpl.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review § Reentrancy

§ Ownership Takeover
§ Timestamp Dependence
§ Gas Limit and Loops
§ DoS with (Unexpected) Throw
§ DoS with Block Gas Limit
§ Transaction-Ordering Dependence
§ Style guide violation
§ Costly Loop
§ ERC20 API violation
§ Unchecked external call
§ Unchecked math
§ Unsafe type inference
§ Implicit visibility level
§ Deployment Consistency
§ Repository Consistency

www.hacken.io

§ Data Consistency
Functional review § Business Logics Review

§ Functionality Checks
§ Access Control & Authorization
§ Escrow manipulation
§ Token Supply manipulation
§ Assets integrity
§ User Balances manipulation
§ Data Consistency manipulation
§ Kill-Switch Mechanism
§ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secured but
contains some edge cases that are recommended to fix.	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 3 medium issues.

Insecure Poor secured Secured Well-secured

You are here

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

	

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

	

www.hacken.io

Audit overview

 Critical

No critical issues were found.

	 	 High

No high severity issues were found.

 Medium

1. An `_lpTokenAddress` parameter is not validated and reward balances
can be messed up.

Contracts: PureFiFarming.sol

Function: addPool

Recommendation: ensure that lp token does not yet exist.

2. When a reward token and the LP token are essentially the same token,
the reward and LP tokens staked by users are mixed. Which may lead to
the fact that that user cannot withdraw LP tokens in case farming
contract lacks reward tokens (or on case of miscalculations when reward
tokens sent to contract).

Contracts: PureFiFarming.sol

Function: addPool

Recommendation: forbit setting reward token as LP token.

Customer notice: Such a case will not happen if calculations are done
properly and contract is fully funded with reward tokens expected to
be claimed by users.

3. `isContract` function returns false in a case when a call is made from
a constructor function of another contract. So this validation becomes
useless and only consumes extra gas. Validating tx origin is enough to
ensure that a caller is not a contract.
Contracts: BSCSwapAgentImpl.sol, ETHSwapAgentImpl.sol
Functions: notContract
Recommendation: remove useless validation.

 Low

No low severity issues were found.

www.hacken.io

Conclusion
Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

As a result of the audit, security engineers found 3 medium issues.

	

	

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and
safety of the code, bugfree status or any other statements of the contract.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only
— we recommend proceeding with several independent audits and a public bug
bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

