

Customer: Embr Holdings Limited
Date: November 9th, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Embr Holdings Limited.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Vault
Platform Binance Smart Chain / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/teamembr/smart-contracts
Commit bd830b5747421178227df0159fc5327b62f38c14
Technical
Documentation

YES

JS tests YES
Website joinembr.com
Timeline 12 OCTOBER 2021 – 18 OCTOBER 2021
Changelog 18 OCTOBER 2021 – INITIAL AUDIT

01 NOVEMBER 2021 – SECOND REVIEW
09 NOVEMBER 2021 – THIRD REVIEW

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Conclusion 11

Disclaimers	 12	

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Embr Holdings Limited (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contract and its code review conducted between October 12th, 2021 – October
18th, 2021.

Second review conducted on November 1st, 2021.

Third review conducted on November 9th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/teamembr/smart-contracts
Commit:
 bd830b5747421178227df0159fc5327b62f38c14
Technical Documentation: Yes (in repository readme.md)
JS tests: Yes (in repository test/)
Contracts:

vault.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence

▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence

▪ Style guide violation
▪ Costly Loop

▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math

▪ Unsafe type inference
▪ Implicit visibility level

▪ Deployment Consistency
▪ Repository Consistency

▪ Data Consistency

www.hacken.io

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation

▪ Assets integrity
▪ User Balances manipulation

▪ Data Consistency manipulation
▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured. 	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 3 medium and 4 low severity
issues.

After the second review and also considering comments added by the customer
security engineers found that there are still unresolved 2 medium and 3 low
severity issues.

After the third review security engineers found 1 low severity issue.

	

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

	

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

	

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

1. Tests could not be run

While the documentation doesn’t include an explanation on how to
execute the tests, we’ve gone this way:

- truffle init
- npm i ethers
- truffle test test/test_script.js

But, unfortunately, even when we match the solidity versions, no tests
could be executed. Below is the only output of the script:

Recommendation: Please make sure all tests could be executed and there
is a script or description of how to run them. Also, please make sure
your tests are cover at least 95% of code branches.

 Status: Fixed.

2. No emitting events

There are no emitting events neither in the CrowdSale nor the Vault
contracts.

Recommendation: Please emit events on changing critical parameters as
well as when performing contract actions.

 Status: Responded.

 Customer comment: We have decided not to emit events as we don’t require
off-chain data in this case and to also reduce the gas used (up to 4x
as advised by our Solidity consultant)

www.hacken.io

3. No check for transfer result

While there could be any BEP20 token contract address set to the Vault,
not every contract will throw on error. BEP20 defines that a contract
should return a boolean result of the transfer function, therefore
there should be checking for the result.

Contract: vault.sol

Functions: withdrawTokens

Recommendation: Please check the result of the transfer function call
or use SafeTransfer library which is already doing the thing.

 Status: Fixed.

 Low

1. Tests configured incorrectly

We were able to run tests by the given instructions, but there are also
some changes that should be made to accomplish that:

- rename “abi” => “abi-interfaces”
- line 17 of “test/test.js” change “abi-interfaces.vault.abi” =>
“abi-interfaces/vault.abi”

Recommendation: Please fix the test scripts.

 Status: Fixed.

2. Tests running slow

As the docs stated: “The test may take over 45 minutes to run, due to
dependency both on the public BSC testnet”. But why not to fork the
testnet and run tests in the local ganache environment with the ability
to manually “mine” any number of blocks you need.

Recommendation: Please try to re-work tests to run them locally not
remotely.

 Status: Fixed.

3. Different solidity pragma versions in one codebase.

Using different solidity versions in one codebase make it harder to
compile, deploy and test contracts.

Recommendation: Please use one Solidity version.

 Status: Acknowledged.

4. Conformance to Solidity naming conventions

Solidity defines a naming convention that should be followed.

Contract: vault.sol

www.hacken.io

State Variables: _own_address, approved_founders,
approved_founders_length, allowance_list,
allowance_list_length, func_sign

Function Parameters: isApprovedFounder, registerFounder,
removeFounderByAddress, addAllowanceRecord, signFounder,
resetSignatures, isAllFoundersSigned, isAllowedWithdrawal,
getAllowedWithdrawal, withdrawTokens, emergencyWithdrawTokens, hash

Recommendation: Follow the Solidity naming convention.

 Status: Fixed.

	

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 3 medium and 4 low severity
issues.

After the second review and also considering comments added by the customer
security engineers found that there are still unresolved 2 medium and 3 low
severity issues.

After the third review security engineers found 1 low severity issue.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

