

Customer: Pocket Arena
Date: November 23rd, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Pocket Arena.

Approved by Andrew Matiukhin | CTO Hacken OU
Type ERC20 tokens; Cross-chain transfer
Platform Binance / Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/pocket-arena/POC_ERC20-BEP20
Commit 68c9a327e50c1ae3dad45f95cd104dfd98c78240
Deployed
contracts

1. ERC20 Address:
https://etherscan.io/token/0x095cf7f3e82a1dcadbf0fbc59023f419883ea296

2. BEP20 Address:
https://bscscan.com/token/0x1b6609830c695f1c0692123bd2fd6d01f6794b98

Technical
Documentation

YES

JS tests NO
Website pocketarena.com
Timeline 27 OCTOBER 2021 – 23 NOVEMBER 2021
Changelog 29 OCTOBER 2021 – INITIAL AUDIT

08 NOVEMBER 2021 - SECOND REVIEW
23 NOVEMBER 2021 - THIRD REVIEW

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Conclusion 10

Disclaimers 12

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Pocket Arena (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between October 27th, 2021 - October 29th, 2021.

Second code review conducted on November 8th, 2021.

Third code review conducted on November 23rd, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/pocket-arena/POC_ERC20-BEP20
Commit:

68c9a327e50c1ae3dad45f95cd104dfd98c78240
Technical Documentation: Yes, POC_BEP_Bridge.pdf
(md5: aca347a6ed24b998d37f762cf3833e40)
JS tests: No
Contracts:

POC_BEP20.sol
POC_ERC20.sol

Deployed contracts:
1. ERC20 Address:

https://etherscan.io/token/0x095cf7f3e82a1dcadbf0fbc59023f419883ea296

2. BEP20 Address:
https://bscscan.com/token/0x1b6609830c695f1c0692123bd2fd6d01f6794b98

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item

www.hacken.io

Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence

▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence

▪ Style guide violation
▪ Costly Loop

▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math

▪ Unsafe type inference
▪ Implicit visibility level

▪ Deployment Consistency
▪ Repository Consistency

▪ Data Consistency

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation

▪ Assets integrity
▪ User Balances manipulation

▪ Data Consistency manipulation
▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured.	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

As a result of the audit, security engineers found 1
high and 4 low severity issues.

After the second review security engineers found that some contracts were
slightly changed. Therefore found 1 medium and 1 low severity issue.

After the third review security engineers found that all issues were fixed.

	

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

	

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

Vulnerability: Contracts are vulnerable to permanent blocking by any
token holder.

Contracts:POC_ERC20.sol, POC_BEP20.sol

Functions: pegin_submit, pegout_submit

Arrays ERC20POC.arr_pegin_submit and BEP20POC.pegout_submit could be
filled by the malicious token holder using the methods listed above.
Every transaction will cost him/her a fixed amount of gas and the
minimal amount of tokens. On the other hand, increasing size of that
arrays will drastically increase the gas cost of methods
pegout_submit_complete, pegout_submit_delete, pegout_submit_cancel,
pegin_submit_complete, pegin_submit_delete, pegin_submit_cancel up to
the gas limit of the block that resulting in permanent inoperability
of these methods.

Recommendation: rewrite contracts to stop using regular arrays of
unpredictable size, use mappings instead.

Status: fixed

 Medium

Potential loss of users’ submits and data inconsistency.

When several users call methods within one block, only the last one
will create order because the key for storing data in arr_pegout_submit
and arr_pegin_submit generate only based on block.timestamp

Contracts: POC_ERC20.sol, POC_BEP20.sol

Functions: pegin_submit, pegout_submit

Recommendation: Also use unique parameters to generate storage index,
for example, msg.sender

Status: fixed

 Low

1. Missing event for changing _fee_rate

Contracts: POC_ERC20.sol, POC_BEP20.sol

www.hacken.io

Functions: _fee_rate_set

Changing critical values should be followed by the event emitting for
better tracking off-chain.

Recommendation: Please emit events on the critical values changing.

Status: fixed

2. A public function that could be declared external.

public functions that are never called by the contract should be
declared external to save gas.

Contracts: POC_ERC20.sol, POC_BEP20.sol

Functions: pegin_run, remove_arr_pegin_reserve, transferFrom,
staff_list, staff_del, staff_quota_add, staff_quota_minus,
_fee_rate_get, fee_income, unlocked_POC_total,
unlocked_POC_total_add, unlocked_POC_total_minus, pegout_submit,
pegout_submit_list, pegout_submit_complete, pegout_submit_delete,
pegout_submit_cancel, pegin_reserve, pegin_reserve_cancel,
pegin_reserve_list, pegin_reserve_list, pegin_run, pegout_run,
remove_arr_pegout_reserve, transferFrom, staff_list, staff_del,
staff_quota_add, staff_quota_minus, _fee_rate_get, locked_POC_total,
locked_POC_total_add, locked_POC_total_minus, pegin_submit,
pegin_submit_list, pegin_submit_complete, pegin_submit_delete,
pegin_submit_cancel, pegout_reserve, pegout_reserve_cancel,
pegout_reserve_list, pegout_reserve_list, pegout_run

Recommendation: Use the external attribute for functions never called
from the contract.

Status: fixed

3. Boolean equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Contracts: POC_ERC20.sol, POC_BEP20.sol

Functions: transfer, transferFrom, staff_add, staff_quota_add,
pegin_reserve, pegout_reserve

Recommendation: remove the equality to the boolean constant.

Status: fixed

4. Code and documentation inconsistency.

Contracts: POC_ERC20.sol, POC_BEP20.sol

Functions: _fee_rate_set

www.hacken.io

According to documentation maximum fee should be 100%, but contracts
allow to set it up to 1000%.

Recommendation: update contracts or documentation

Status: fixed

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 1 high and 4 low severity
issues.

After the second review security engineers found that some contracts were
slightly changed. Therefore found 1 medium and 1 low severity issue.

After the third review security engineers found that all issues were fixed.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

