

Customer: Retreeb
Date: November 09th, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Retreeb.

Approved by Andrew Matiukhin | CTO Hacken OU
Type ERC20 token; Staking
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/RetreebInc/staking-platform
Commit de6c61f7559d9405ff6a764e8c0becdae8630ff7
Technical
Documentation

NO

JS tests YES
Timeline 06 OCTOBER 2021 – 09 NOVEMBER 2021
Changelog 11 OCTOBER 2021 – Initial Audit

22 OCTOBER 2021 – Second Review
09 NOVEMBER 2021 – Third Review

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 8

Audit overview 9

Conclusion 10

Disclaimers 12

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Retreeb (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between October 6th, 2021 - October 11th, 2021.

Second review conducted on October 22nd, 2021.

Third review conducted on November 9th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/RetreebInc/staking-platform
Commit:
 de6c61f7559d9405ff6a764e8c0becdae8630ff7
Technical Documentation: No
JS tests: Yes
Contracts:

staking/StakingPlatform.sol
staking/IStakingPlatform.sol
staking/TesterStakingPlatform.sol
token/Token.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence
▪ Style guide violation

▪ Costly Loop
▪ ERC20 API violation

▪ Unchecked external call
▪ Unchecked math

▪ Unsafe type inference
▪ Implicit visibility level

▪ Deployment Consistency
▪ Repository Consistency

www.hacken.io

▪ Data Consistency

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation

▪ Token Supply manipulation
▪ Assets integrity

▪ User Balances manipulation
▪ Data Consistency manipulation

▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured. 	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 1 low severity issue.

After the second review security engineers found that some contracts were
slightly changed. Therefore found 3 medium and 1 low severity issues.

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

After the third review security engineers found 1 low severity issue.

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

1. All rewards for the staking period become available just after the
user stakes

Contracts: StakingPlatform.sol

Functions: _calculateRewards

Recommendation: Update function to return only rewards available
since staking.

Status: fixed

2. Under some conditions, the user will be available to unstake just
after stake

In case lockupDuration < stakingDuration and lockupDuration already
passed since the start of staking, user will be available to withdraw
just after deposit.

Contracts: StakingPlatform.sol

Functions: withdraw

Recommendation: Update function to prevent withdrawal before the
finish of staking.

Status: expected behavior, not an issue

3. Unexpected remaining time calculation after the finish of staking

Contracts: StakingPlatform.sol

Functions: _percentageTimeRemaining

Recommendation: Update function to return zero instead of 100% in
case staking already finished, for example by changing last line to
return startPeriod == 0 ? precision : 0;

Status: fixed

www.hacken.io

 Low

Vulnerability: Block timestamp

Dangerous usage of block.timestamp. block.timestamp can be
manipulated by miners. Contract StakingPlatform is fully related on
the block.timestamp

Recommendation: Please consider relying on the block.number instead

	

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 1 low severity issue.

After the second review security engineers found 1 low severity issue.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

