

Customer: Unipilot
Date: November 11th, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Unipilot.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Liquidity Manager
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/VoirStudio/unipilot-protocol-contract-v2
Commit e5ac07dea4dc11d5b163467fddc39945fe781c5d
Technical
Documentation

YES

JS tests YES
Website unipilot.io
Timeline 18 OCTOBER 2021 – 11 NOVEMBER 2021
Changelog 29 OCTOBER 2021 – INITIAL AUDIT

11 NOVEMBER 2021 – SECOND REVIEW

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 8

Audit overview 9

Conclusion 12

Disclaimers 13

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Unipilot (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between October 18th, 2021 – October 29th, 2021

Second code review conducted on November 10th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/VoirStudio/unipilot-protocol-contract-v2
Commit:

e5ac07dea4dc11d5b163467fddc39945fe781c5d
Technical Documentation: Yes; Business logic, no technical specs
- https://docs.google.com/document/d/1heX04nZ_f7cP7JVgSAzedpXMbuS9erN-
YnbJI6NFcR0/edit
- https://docs.google.com/document/d/1-RorxePAvG6yooTtmpX27OwuBljd-
qtvOOpviqUtJzk/edit?pli=1

JS tests: Yes; Included (“/test/”)
Contracts:

libraries/TransferHelper.sol
interfaces/IERC721Permit.sol
oracle/libraries/OracleLibrary.sol
interfaces/external/IERC20PermitAllowed.sol
oracle/interfaces/IOracle.sol
interfaces/ILiquidityMigrator.sol
libraries/PositionKey.sol
libraries/SafeCast.sol
interfaces/external/IWETH9.sol
libraries/Sqrt.sol
base/ERC721Permit.sol
base/BlockTimestamp.sol
libraries/LowGasSafeMath.sol
interfaces/IUniStrategy.sol
interfaces/IUnipilot.sol
V3Oracle.sol
interfaces/uniswap/INonfungiblePositionManager.sol
test/ERC20.sol
interfaces/uniswap/IULMState.sol
oracle/libraries/SafeUint128.sol
base/PeripheryPayments.sol
libraries/LiquidityReserves.sol
libraries/LiquidityAmounts.sol
interfaces/external/IERC1271.sol
interfaces/uniswap/IULMEvents.sol
libraries/FixedPoint128.sol
interfaces/IExchangeManager.sol
interfaces/external/IERC20.sol
base/ULMState.sol

www.hacken.io

interfaces/uniswap/IUniswapLiquidityManager.sol
Unipilot.sol
base/UniswapLiquidityManager.sol
UniStrategy.sol
libraries/ChainId.sol
LiquidityMigrator.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence

▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence

▪ Style guide violation
▪ Costly Loop

▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math

▪ Unsafe type inference
▪ Implicit visibility level

▪ Deployment Consistency
▪ Repository Consistency

▪ Data Consistency

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation

▪ Assets integrity
▪ User Balances manipulation

▪ Data Consistency manipulation
▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

	

www.hacken.io

Executive Summary

According to the assessment, the Customer's smart contracts are secured. 	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 2 medium and 5 low severity
issues.

After the second review security engineers found some changes in the code
related to interfaces and some code reorganization. Unfortunately,
inconsistencies between the code and documentation weren’t fixed therefore
there are still 2 medium and 2 low issues.

Notice:

Contracts are written in a very SDKish manner which makes it difficult to
understand all inputs and outputs. There are some inconsistencies with the
provided business logic documentation as well as no technical documentation.

Notice 2:

We’d recommend rewriting the UniswapLiquidityManager contract to be more
straightforward and linear logic. Right now there are too many logic branches
that could bring to misunderstanding or just confuse anyone who tries to
unravel the logic.

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

	

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

1. Tests could not be run.

Following the instruction. Run:

$ yarn install
$ yarn compile
$ yarn test

but receiving an error:

Recommendation: Please make sure tests could be run and cover at least
95% of code branches.

2. Inconsistency with provided docs.

While it said in the docs:

4. The position could be rebased if the current price/tick is outside
the base range or +-15% from the upper and lower tick of the base
range.
5. The smart contracts should not allow rebasing for pairs whose
twap is diverged 10% from its current price.
6. The PILOT token would be rewarded for the rebasing (gas fees +
(150000 gwei * gas price)) if the pair’s liquidity exceeds $100,000.

www.hacken.io

in the code, we see that “$100,000” is the constant
(LIQUIDITY_VALIDATION_AMOUNT) while it should be
changeable by the governance, and also, instead of taking “150000 gwei”
which also should be configurable by governance, we couldn’t find it
at all. As well as items 4-5.

Contracts: UniswapLiquidityManager.sol

Constants: readjustLiquidity

Recommendation: Please make sure contracts are aligned with the docs.

 Low

1. Unused constants.

Contracts: PeripheryPayments.sol

Constants: DAI, USDC, USDT

Recommendation: Remove unused constants.

Status: Fixed

2. No events on values changed.

While contract changes critical values it is recommended to emit events
so the community may track such changes off-chain.

Contracts: UniStrategy.sol

Functions: setRangeMultiplier, setBaseMutiplier, setMaxTwapDeviation,
setTwapDuration

Recommendation: Remove unused constants.

Status: Fixed

3. Boolean equality.

Boolean constants can be used directly and do not need to be compared
to true or false.

Contracts: UniswapLiquidityManager.sol

Functions: readjustLiquidity

Recommendation: Remove the equality to the boolean constant.

Status: Fixed

4. Too many digits.

Literals with many digits are difficult to read and review.

Contracts: UniswapLiquidityManager.sol, V3Oracle.sol

www.hacken.io

Functions: readjustLiquidity

Constants: LIQUIDITY_VALIDATION_AMOUNT

Recommendation: Please use either scientific notation or ether units
suffix (ie: 0.2e18 or 0.2 ether; 100e6 ether instead of
100000000000000000000000).

Status: Partly fixed

5. A public function that could be declared external

public functions that are never called by the contract should be
declared external to save gas.

Contracts: V3Oracle.sol, ULMState.sol

Functions: V3Oracle.checkPoolValidation, ULMState.getPoolAddress,
V3Oracle.getPilotAmountWethPair, V3Oracle.getPilotAmountForTokens

Recommendation: Use the external attribute for functions never called
from the contract.

	

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 2 medium and 5 low severity
issues.

After the second review security engineers found some changes in the code
related to interfaces and some code reorganization. Unfortunately,
inconsistencies between the code and documentation weren’t fixed therefore
there are still 2 medium and 2 low issues.

Notice:

Contracts are written in a very SDKish manner which makes it difficult to
understand all inputs and outputs. There are some inconsistencies with the
provided business logic documentation as well as no technical documentation.

Notice 2:

We’d recommend rewriting the UniswapLiquidityManager contract to be more
straightforward and linear logic. Right now there are too many logic branches
that could bring to misunderstanding or just confuse anyone who tries to
unravel the logic.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

