

Customer: Digital Arms
Date: December 15th, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Digital Arms.

Approved by Andrew Matiukhin | CTO Hacken OU
Type ERC20 token; Vesting
Platform Binance / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/grape404/Hunters-Pre-Sale-Vesting
Commit 5498d05494fecf4369b11262fce93f73e9f517c6
Technical
Documentation

YES

JS tests YES
Website Hunter-token.com
Timeline 15 NOVEMBER 2021 – 15 DECEMBER 2021
Changelog 18 NOVEMBER 2021 – Initial Audit

26 NOVEMBER 2021 – Second Review
15 DECEMBER 2021 - Third Review

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Conclusion 11

Disclaimers 12

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Digital Arms (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between November 15th, 2021 - November 18th, 2021.

Second review conducted on November 26th, 2021.

Third review conducted on December 15th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/grape404/Hunters-Pre-Sale-Vesting
Commit:

5498d05494fecf4369b11262fce93f73e9f517c6
Technical Documentation: Yes, https://magnetic-sea-006.notion.site/Hunters-
Pre-Sale-Vesting-Smart-Contracts-Specification-and-Functions-Document-
c250318ebc5d4a7e929d0c9f43d334c1
https://docsend.com/view/gcfdaiymvyqcakkh
JS tests: Yes, in the repository
Contracts:

Vesting.sol
ERC20Token.sol	

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence
▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop

▪ ERC20 API violation
▪ Unchecked external call

▪ Unchecked math
▪ Unsafe type inference

▪ Implicit visibility level
▪ Deployment Consistency

▪ Repository Consistency
▪ Data Consistency

www.hacken.io

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation

▪ Assets integrity
▪ User Balances manipulation

▪ Data Consistency manipulation
▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured. 	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 1 medium and 6 low severity
issues.

As a result of the second review, security engineers found 1 low severity
issue.

As a result of the third review, security engineers found that functionality
was slightly changed. Therefore found 2 low severity issues.

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

	

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

In some conditions, users could bypass the vesting monthly allocation
mechanism.

After the last call of setDistributionPercent, when
tierVestingInfo[_tierId].totalAllocationDone equals 10000, but before
setVestingTimeForTier called by owner, any user that already bought
vesting tokens could call vestTokens to receive all tokens regardless
of schedule.

Contracts:Vesting.sol

Functions: vestTokens

Recommendation: add a check tierVestingInfo[_tierId].vestingStartTime
!= 0

Status: fixed

 Low

1. Possible token loss

In case tierVestingInfo[_tierId].vestingStartTime is earlier than
tierInfo[_tierId].endTime for some _tierId, between these moments user
could call buyVestingTokens after vestTokens which results loss of some
fraction of his/her tokens.

Contracts:Vesting.sol

Recommendation: add a check that prevents such a scenario.

Status: fixed

2. Possible data inconsistency

If function setDistributionPercent calls more than once for same month,
sum of allocationPerMonth[_tierId][] become not equal
tierVestingInfo[_tierId].totalAllocationDone

Contracts:Vesting.sol

www.hacken.io

Recommendation: add a check that prevents the second call for the same
month or include the current value in the calculation

Status: fixed

3. Misleading revert message

Contracts: Vesting.sol

Functions: vestTokens (line #390)

Recommendation: change value to 10000 or 100%

Status: fixed

4. State variables that could be declared constant

Constant state variables should be declared constant to save gas.

Contracts: Vesting.sol

Variables: secondsInMonth

Recommendation: Add the constant attributes to state variables that
never change.

Status: fixed

5. A public function that could be declared external.

public functions that are never called by the contract should be
declared external to save gas.

Contracts: Vesting.sol

Functions: whitelistAddress, removeWhitelistAddress,
setDistributionPercent, setVestingTimeForTier, buyVestingTokens,
vestTokens, adminWithdrawStableCoin

Recommendation: Use the external attribute for functions never called
from the contract.

Status: fixed

6. Using SafeMath in Solidity >= 0.8.0

Starting solidity version 0.8.0 arithmetic operations revert on
underflow and overflow. There’s no more need to assert the result of
operations.

Contracts: Vesting.sol

Recommendation: Please avoid using assert for arithmetic operations.

7. Boolean equality

www.hacken.io

Boolean constants can be used directly and do not need to be compared
to true or false.

Contracts: Vesting.sol

Functions: buyVestingTokens, allocateVestingTokens,
removeAllocatedVestingTokens

Recommendation: remove the equality to the boolean constant.

	

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 1 medium and 6 low severity
issues.

As a result of the second review, security engineers found 1 low severity
issue.

As a result of the third review, security engineers found that functionality
was slightly changed. Therefore found 2 low severity issues.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

