

Customer: Kingdom Raids
Date: December 15th, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Kingdom Raids.

Approved by Andrew Matiukhin | CTO Hacken OU
Type ERC20 token; ERC721 token; Vesting
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/kingdomraids/kr-nft

https://github.com/kingdomraids/kr-token
https://github.com/kingdomraids/kr-ido-contract

Commit 6dafe413dd90e5b1c1e85a5b8ec6c8fc71fd87af
a2c25ce00ca5a02ae36e1275243e83a661fad6d9
b8e0b81319209fc0e3144d336d3a9e0bcc808b62

Technical
Documentation

NO

JS tests NO
Website Kingdomraids.io
Timeline 30 NOVEMBER 2021 – 15 DECEMBER 2021
Changelog 06 DECEMBER 2021 – Initial Audit

15 DECEMBER 2021 – Second Review

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 8

Audit overview 9

Conclusion 12

Disclaimers 13

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Kingdom Raids (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between November 30th, 2021 - December 06th, 2021.

Second review conducted on December 15th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/kingdomraids/kr-nft
https://github.com/kingdomraids/kr-token
https://github.com/kingdomraids/kr-ido-contract

Commit:
6dafe413dd90e5b1c1e85a5b8ec6c8fc71fd87af
a2c25ce00ca5a02ae36e1275243e83a661fad6d9
b8e0b81319209fc0e3144d336d3a9e0bcc808b62

Technical Documentation: No
JS tests: No
Contracts:

Hero/Hero.sol
Interfaces/IHero.sol
Summon.sol
KRToken.sol
Metric/EcosystemFund.sol
Metric/Team.sol
Metric/Advisor.sol
Metric/Liquidity.sol
Metric/Marketing.sol
Metric/PrivateSale.sol
Metric/CompanyReserves.sol
Metric/SeedSale.sol
IDO.sol	

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

www.hacken.io

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence
▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence
▪ Style guide violation

▪ Costly Loop
▪ ERC20 API violation

▪ Unchecked external call
▪ Unchecked math

▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency

▪ Repository Consistency
▪ Data Consistency

Functional review

▪ Business Logics Review

▪ Functionality Checks
▪ Access Control & Authorization

▪ Escrow manipulation
▪ Token Supply manipulation

▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency manipulation

▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured. 	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

As a result of the audit, security engineers found 1 medium and 10 low
severity issues.

After the second review, security engineers found 2 low severity issues.

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

	

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

1. Lock contracts don’t enforce allocation schedules.

Contracts: EcosystemFund.sol, Liquidity.sol, Marketing.sol,
PrivateSale.sol, SeedSale.sol, Advisor.sol, Team.sol

Functions: unlock

The owner could call unlock after release to change nextTimeRelease
and be able to call release again etc., up to withdraw the entire
balance.

Recommendation: Disallow calling unlock more than once.

Status: fixed

 Low

1. Syntax error

Contracts: CompanyReserves.sol

Functions: release (lines #38,#39)

Recommendation: fix variable name

Status: fixed

2. Misleading revert message

Contracts: IDO.sol

Functions: constructor (lines #81,#82)

Require statement check _startRedeemAt < _endRedeemAt, but revert
message states _startRedeemAt must be <= _endRedeemAt

Recommendation: change revert message

www.hacken.io

3. Using SafeMath in Solidity >= 0.8.0

Starting solidity version 0.8.0 arithmetic operations revert on
underflow and overflow. There’s no more need to assert the result of
operations.

Contracts: Hero.sol, EcosystemFund.sol, Liquidity.sol, Marketing.sol,
PrivateSale.sol, SeedSale.sol, Advisor.sol, Team.sol, Summon.sol

Recommendation: Please avoid using assert for arithmetic operations.

Status: fixed

4. Misleading comment

Contracts: IDO.sol (lines #26,#27)

Comment before variable belongs to a different variable.

Recommendation: change comment

Status: fixed

5. State variables that could be declared constant

Constant state variables should be declared constant to save gas.

Contracts: EcosystemFund.sol, Liquidity.sol, Marketing.sol,
PrivateSale.sol, SeedSale.sol, Advisor.sol, Team.sol

Variables: eachReleaseAmount, releasePeriod

Recommendation: Add the constant attributes to state variables that
never change.

Status: fixed

6. Boolean equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Contracts: IDO.sol, CompanyReserves.sol

Functions: redeemable, release

Recommendation: remove the equality to the boolean constant.

Status: fixed

7. A public function that could be declared external.

public functions that are never called by the contract should be
declared external to save gas.

Contracts: Summon.sol, Hero.sol

www.hacken.io

Functions: setSignerPublicKey,
setHeroSmartContractAddress, setFee, setSupplyLimit

Recommendation: Use the external attribute for functions never called
from the contract.

8. Missing event for changing _supplyLimit, signerPublicKey,
acceptedToken, heroSmartContractAddress, fee

Contracts: Hero.sol, Summon.sol

Functions: setSupplyLimit, setSignerPublicKey, setAcceptedToken,
setHeroSmartContractAddress, setFee

Changing critical values should be followed by the event emitting for
better tracking off-chain.

Recommendation: Please emit events on the critical values changing.

Status: fixed

9. View function returns an array of unpredictable size

Contracts: Hero.sol

Functions: walletOfOwner

Starting from a certain amount of tokens owned by a single user function
could become inoperable.

Recommendation: Add limit and offset parameter to view function

Status: fixed

10.Missing validation

Contracts: Summon.sol

Functions: setHeroSmartContractAddress

Address validated during contract creation but not in setter method

Recommendation: add isContract() validation

Status: fixed	

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 1 medium and 10 low
severity issues.

After the second review, security engineers found 2 low severity issues.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

