SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Liquidus
Date: December 20", 2021



Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

E

HACHEN

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Smart Contract Code Review and Security Analysis Report for
Liquidus.

Andrew Matiukhin | CTO Hacken OU

Staking

Binance Smart Chain / Solidity

Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Farm_vesting.sol

SingleTokenStake.sol

435f54808fb12f9585dd5055c4b0a162
6f0df7cfb6300da6d4237555151f41d5

NO

NO

liquidus.finance

13 DECEMBER 2021 - 20 DECEMBER 2021
20 DECEMBER 2021 - INITIAL AUDIT

O
o
N
o
3
)
3
ct

www. hacken.io




I I I I I Hacken 0U
Parda 4, Kesklinn, Tallinn,

10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

HACHEN

Table of contents

Introduction

Scope

Executive Summary
Severity Definitions

Audit overview

o ~ (o) B¢, £ £

Conclusion 1

Disclaimers 11

www. hacken.io




( ﬁ H‘ (( Hacken 0U
444444447: Parda 4, Kesklinn, Tallinn,

10151 Harju Maakond, Eesti,
‘ ‘ Kesklinna, Estonia

HECKHEN support@hacken.io

Introduction

Hacken 00U (Consultant) was contracted by Liquidus (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between December 13*™, 2021 - December 20", 2021.

Scope

The scope of the project is smart contracts in the solidity files:

Files:
Farm_vesting.sol
SingleTokenStake.sol

md5 hash:
435f54808fb12f9585dd5055¢c4b0a162
6f0df7cfb6300da6d4237555151f41d5

Technical Documentation: No

JS tests: No

Contracts:
Farm_vesting.sol
SingleTokenStake.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Code review *  Reentrancy

®= Qwnership Takeover

®= Timestamp Dependence

®= Gas Limit and Loops

* DoS with (Unexpected) Throw
®= DoS with Block Gas Limit

®" Transaction-Ordering Dependence
= Style guide violation

®= Costly Loop

= ERC20 API violation

= Unchecked external call

®= Unchecked math

®= Unsafe type inference

= Implicit visibility level

®= Deployment Consistency

= Repository Consistency

= Data Consistency

www. hacken.io




Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Functional review . . . .
Business Logics Review

" Functionality Checks

= Access Control & Authorization
®= Escrow manipulation

= Token Supply manipulation

" Assets integrity

= User Balances manipulation

= Data Consistency manipulation
®= Kill-Switch Mechanism

®= Qperation Trails & Event Generation

Executive Summary
According to the assessment, the Customer's smart contracts are secured.

Insecure Poor secured Secured Well-secured
You are here

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 9 low severity issues.

www. hacken.io




|LLLL

HACHEN

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Severity Definitions

Critical

Medium

Low

Critical vulnerabilities are usually straightforward to
exploit and <can lead to assets 1loss or data
manipulations.

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have

a significant impact on execution

www. hacken.io




Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Audit overview

m m m mCritical
No critical issues were found.
High
No high severity issues were found.
m = Medium
No medium severity issues were found.
m Low
1. State variables that could be declared immutable.

Constant state variables that are initialized in the constructor should
be declared immutable to save gas.

Contract: Staking
Variables: reward, lpToken

Recommendation: Add the immutable attribute to state variables that
never change and are initialized in the constructor.

2. Missing event for changing rewardPerBlock, vestingTime

Changing critical values should be followed by the event emitting for
better tracking off-chain.

Contracts: Staking

Functions: setRewardPerBlock, updateVestingTime

Recommendation: Please emit events on the critical values changing.
3. Duplicated code

Some code, like rewards calculation, pending rewards, rewards debt are
duplicated multiple times.

Contracts: Staking

Functions: pendingReward, updatePool, deposit, withdraw, harvest

Recommendation: Please put the calculation code into one function and
call it from others when needed.

4, A public function that could be declared external.

public functions that are never called by the contract should be
declared external to save gas.

Contracts: Staking
www. hacken.io




Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Functions: setRewardPerBlock, deposit, withdraw, harvest,
emergencyWithdraw

Recommendation: Use the external attribute for functions never called
from the contract.

5. State variables that could be declared immutable.

Constant state variables that are initialized in the constructor should
be declared immutable to save gas.

Contract: CodiStake
Variables: stakedToken, PRECISION_FACTOR

Recommendation: Add the immutable attribute to state variables that
never change and are initialized in the constructor.

6. A public function that could be declared external.

public functions that are never called by the contract should be
declared external to save gas.

Contracts: CodiStake

Functions: harvest

Recommendation: Use the external attribute for functions never called
from the contract.

7. Duplicated code

Some code, like rewards calculation, pending rewards, rewards debt are
duplicated multiple times.

Contracts: CodiStake

Functions: deposit, pendingReward, harvest, withdraw,

Recommendation: Please put the calculation code into one function and
call it from others when needed.

8. Excess require statement

The same “require” statement is placed on lines 972 and 973.

Contracts: CodiStake

Functions: recoverWrongTokens

Recommendation: Please remove excess require statement.
9. Missing event for changing bonusEndBlock, vestingTime

Changing critical values should be followed by the event emitting for
better tracking off-chain.

www. hacken.io




Contracts: CodiStake

Functions: stopReward, updateVestingTime

Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Recommendation: Please emit events on the critical values changing.

www. hacken.io




Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 9 low severity issues.

www. hacken.io




Hacken 0U

Parda 4, Kesklinn, Tallinn,
10151 Harju Maakond, Eesti,
Kesklinna, Estonia
support@hacken.io

Disclaimers
Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

www. hacken.io




