

Customer: RedFox
Date: September 30th, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
RedFox.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Staking
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/RFL-Valt/smart-cheft-contract
Commit dddf820a166b092fac4d1ad570fd2a424f6381d8
Technical
Documentation

NO

Deployed
contract

https://etherscan.io/address/0x4394f7d0b05f80baf246f79854e0e93f7
1181df1

JS tests NO
Timeline 15 SEPTEMBER 2021 – 30 SEPTEMBER 2021
Changelog 20 SEPTEMBER 2021 – INITIAL AUDIT

22 SEPTEMBER 2021 – SECOND REVIEW
30 SEPTEMBER 2021 – THIRD REVIEW

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Conclusion 9

Disclaimers 11

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by RedFox (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the findings
of the security assessment of the Customer's smart contract and its code
review conducted between September 15th, 2021 - September 20th, 2021. The
second code review conducted on September 22nd, 2021. The third code review
conducted on September 30th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/RFL-Valt/smart-cheft-contract
Commit:
 dddf820a166b092fac4d1ad570fd2a424f6381d8
Deployed contract:
 https://etherscan.io/address/0x4394f7d0b05f80baf246f79854e0e93f71181df1
Technical Documentation: No
JS tests: No
Contracts:

interfaces\IERC20.sol
libraries\Address.sol
libraries\Context.sol
libraries\Ownable.sol
libraries\ReentrancyGuard.sol
libraries\SafeERC20.sol
libraries\SafeMath.sol
mock\ERC20.sol
SmartChefFactory.sol

	

www.hacken.io

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence

▪ Style guide violation
▪ Costly Loop

▪ ERC20 API violation
▪ Unchecked external call

▪ Unchecked math
▪ Unsafe type inference

▪ Implicit visibility level
▪ Deployment Consistency

▪ Repository Consistency
▪ Data Consistency

Functional review

▪ Business Logics Review
▪ Functionality Checks

▪ Access Control & Authorization
▪ Escrow manipulation

▪ Token Supply manipulation
▪ Assets integrity

▪ User Balances manipulation
▪ Data Consistency manipulation

▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured. 	

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 4 medium and 1 low severity
issue.

After the second review security engineers found that all previously found
medium severity issues were fixed however 1 low severity issue is still
there.

After the third review security engineers found that all issues were fixed.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

1. Tautology or contradiction

While IERC20.totalSupply() function returns uint256, which is an
unsigned integer, the returned value will always be greater than or
equal to zero. Therefore the expressions below would always return true
and are excess.

Recommendation: Remove excess “require” statements.

Fixed before the second review

2. The pool owner is able to withdraw rewards

Using declared function emergencyRewardWithdraw the pool owner/creator
cold withdraw the entire rewards balance at any time.

Recommendation: please either add some delay to let users take out
their rewards in the case of some pool creator wants to scam, or remove
that functionality.

Fixed before the second review

3. The pool owner could stop rewards with no event emitted

Using declared function stopReward the pool owner/creator cold stop
rewards at any time with no event or notification for users.

Recommendation: please at least emit a NewStartAndEndBlocks event on
changing bonusEndBlock.

Fixed before the second review

4. Some users could receive less or more than deserved

By calling the updateRewardPerBlock the pool creator/owner could set
a new value (even 0) and it will affect all previously staked but not
withdrawn users.

Recommendation: Please revise the pool rewards logic so you can
recalculate previously earned rewards before changing the coefficient.

Fixed before the second review

 Low

1. A State variable that could be declared immutable

www.hacken.io

State variables that got initialized in the constructor and then never
change their values should be declared immutable to save gas.

Recommendation: Please add an immutable attribute for state variables
that are initialized in the constructor and never change their values.

Fixed before the third review

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 4 medium and 1 low severity
issue.

After the second review security engineers found that all previously found
medium severity issues were fixed however 1 low severity issue is still
there.

After the third review security engineers found that all issues were fixed.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

