
Customer: Bizverse World PTE. LTD
Date:     March 7th, 2022



This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly
after all vulnerabilities are fixed — upon a decision of the
Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Bizverse World PTE. LTD.

Approved by Andrew Matiukhin | CTO Hacken OU
Type ERC20 token; Vesting
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/BIZVERSE-LAB/smartcontracts-hacken-audit
Commit a8ff52fb65b60c9f2bac75694662efe3a6c12026
Deployed
contract

—

Technical
Documentation

YES

JS tests NO
Website
Timeline 16 FEBRUARY 2022 – 07 MARCH 2022
Changelog 25 FEBRUARY 2022 – INITIAL AUDIT

07 MARCH 2022 – SECOND REVIEW

www.hacken.io



Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 7

Audit overview 8

Conclusion 9

Disclaimers 10

www.hacken.io



Introduction

Hacken OÜ (Consultant) was contracted by Bizverse World PTE. LTD.
(Customer) to conduct a Smart Contract Code Review and Security Analysis.
This report presents the findings of the security assessment of the
Customer's smart contract and its code review conducted between February
16th, 2022 - March 7th, 2022.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/BIZVERSE-LAB/smartcontracts-hacken-audit
Commit:

a8ff52fb65b60c9f2bac75694662efe3a6c12026
Technical Documentation: Yes —
https://docs.google.com/document/d/1w6l4-UfFoAnU3ujY7qF4C1TMY4wwlvq5_XnoZ3m
xVDk/edit
JS tests: No
Contracts:

BIVE/openzeppelin/Context.sol
BIVE/openzeppelin/ERC20.sol
BIVE/openzeppelin/ERC20Pausable.sol
BIVE/openzeppelin/IERC20.sol
BIVE/openzeppelin/IERC20Metadata.sol
BIVE/openzeppelin/Ownable.sol
BIVE/openzeppelin/Pausable.sol
BIVE/Bizverse.sol
BIVE/BizverseWorldERC20.sol
BIVE/Blacklistable.sol
BIVE/ERC20Blacklistable.sol
Allocate.sol

www.hacken.io



We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency manipulation
▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

www.hacken.io



Executive Summary

According to the assessment, the Customer's smart contracts are secured.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during
automated analysis were manually reviewed, and important vulnerabilities
are presented in the Audit overview section. All found issues can be found
in the Audit overview section.

As a result of the audit, security engineers found 1 medium and 2 low
severity issues.

After the second review security engineers found that low issues were
resolved and the medium one was commented on. As per the customer’s
comment, the constructor arguments would be used to provide the correct TGE
parameters. However, that could not be checked by the security team unless
the contract is deployed. Therefore we still have unresolved 1 medium
issue.

www.hacken.io



Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io



Audit overview

Critical

No critical issues were found.

High

No high severity issues were found.

Medium

1. Functionality not implemented.

While the provided documentation states exact allocations and
vesting terms, the implementation of the current contracts don’t
specify that. Those allow to set up any allocations or vesting
terms that could be not related to what is described in docs.

Contracts: Allocate.sol

Recommendation: Please make sure your contracts have allocation and vesting
terms specified in either the constructor or initialization function.

Status: Acknowledged. Would be using constructor arguments.

Low

1. Too many digits.

Literals with many digits are difficult to read and review.

Contracts: Bizverse.sol

Function: constructor

Recommendation: Please use scientific notation or separate by underscores
(ie: 1e13, or 1e9 * 10**4, or 1_000_000_000_0000)

Status: Fixed.

2. External calls in the loop.

In the for-loop, there is a “transferFrom” call which is burning a
lot of gas.

Contracts: Allocate.sol

Function: batchLock

Recommendation: Please sum all amounts and do a single transferFrom-call
after the loop.

Status: Fixed.
www.hacken.io



Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other
issues in the reviewed code.

As a result of the audit, security engineers found 1 medium and 2 low
severity issues.

After the second review security engineers found that low issues were
resolved and the medium one was commented on. As per the customer’s
comment, the constructor arguments would be used to provide the correct TGE
parameters. However, that could not be checked by the security team unless
the contract is deployed. Therefore we still have unresolved 1 medium
issue.

www.hacken.io



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and
producing this report, it is important to note that you should not rely on
this report only — we recommend proceeding with several independent audits
and a public bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

www.hacken.io


