
Customer: Gogo Protocol
Date: February 14th, 2022

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly
after all vulnerabilities are fixed — upon a decision of the
Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Gogo Protocol.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Governance Staking
Platform Polygon / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/gogocoin/gogo-contracts
Commit 0204c6d60f7aaa5c195573fbd0e8388c9bc4a2ef
Deployed
contract

–

Technical
Documentation

NO

JS tests YES
Website
Timeline 17 DECEMBER 2021 – 14 FEBRUARY 2022
Changelog 24 DECEMBER 2021 – INITIAL AUDIT

14 FEBRUARY 2022 – SECOND REVIEW

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 6

Audit overview 7

Conclusion 9

Disclaimers 10

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Gogo Protocol (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contract and its code review conducted between December 17th, 2021 -
February 14th, 2022.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/gogocoin/gogo-contracts
Commit:

0204c6d60f7aaa5c195573fbd0e8388c9bc4a2ef
Technical Documentation: No
JS tests: Yes (included: test/govstaking.test.ts)
Contracts:

gov/CommunityRewards.sol
gov/CommunityRewardsManager.sol
gov/GovStaking.sol
gov/GovStakingStorage.sol
gov/RewardsDistributionRecipient.sol
gov/CommunityRewardsV2.sol
gov/GovStakingv2.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

www.hacken.io

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency manipulation
▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

Executive Summary

According to the assessment,the Customer's smart contracts are
well-secured.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during
automated analysis were manually reviewed, and important vulnerabilities
are presented in the Audit overview section. All found issues can be found
in the Audit overview section.

As a result of the audit, security engineers found 1 medium and 5 low
severity issues.

After the second review security engineers found two new contracts (with
prefixes V2) and fixes that were implemented in new contracts. Therefore 2
low severity issues still persist.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io

Audit overview

Critical

No critical issues were found.

High

No high severity issues were found.

Medium

1. Possible inconsistency.

While both contracts GovStaking and CommunityRewards are using
GovStakingStorage and both rely on the data from the storage, it’s
very important that all they have the same storage instance. If
the storage address will be different, there will be inconsistency
in the state which could lead to unpredictable results.

Contract: GovStaking.sol, CommunityRewards.sol,
CommunityRewardsManager.sol

State Variable: store

Recommendation: Please use the manager to ensure that Staking and Rewards
contracts have the same store address.

Status: Fixed in V2 contracts

Low

1. Unused import statement.

Contract: GovStakingStorage.sol

Import: hardhat/console.sol

Recommendation: Remove unused import statement.

Status: Not fixed

2. Incorrect contract imported.

CommunityRewards contract inherits RewardsDistributionRecipient
but it imports that from the “staking” directory of the project
instead of the “gov” one. Since those contracts are the same it’s
not a big deal, but for consistency meaning it’s better to import
the correct contract.

Contract: CommunityRewards.sol

Recommendation: Please fix the import statement.

www.hacken.io

Status: Fixed in V2 contract

3. Too many digits.

Literals with many digits are difficult to read and review. It’s
always a better idea to use solidity provided time unit suffixes
like:

● 1 == 1 seconds
● 1 minutes == 60 seconds
● 1 hours == 60 minutes
● 1 days == 24 hours
● 1 weeks == 7 days

Contract: GovStaking.sol

Function: constructor

Recommendation: Please use time unit suffixes.

Status: Not fixed.

4. No events emitted.

Changing the contract values, which are critical, is always
recommended to follow with the events so the community members are
always able to track such changes off-chain.

Contract: CommunityRewards.sol

Functions: setEarlyExitFee

Recommendation: Please emit events on fees changed.

Status: Fixed.

5. A public function that could be declared external.

public functions that are never called by the contract should be
declared external to save gas.

Contracts: GovStaking.sol, GovStakingStorage.sol,
CommunityRewards.sol

Functions: GovStaking.claim, GovStaking.claimAll, GovStaking.earned,
GovStaking.pause, GovStaking.unpause, GovStakingStorage.getTotalLockedGogo,
GovStakingStorage.getTotalRewardRates, GovStakingStorage.emergencyWithdraw,
CommunityRewards.getReward, CommunityRewards.getRewardWithLoss,

Recommendation: Use the external attribute for functions never called from
the contract.

Status: Fixed.

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other
issues in the reviewed code.

As a result of the audit, security engineers found 1 medium and 5 low
severity issues.

After the second review security engineers found two new contracts (with
prefixes V2) and fixes that were implemented in new contracts. Therefore 2
low severity issues still persist.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and
producing this report, it is important to note that you should not rely on
this report only — we recommend proceeding with several independent audits
and a public bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

www.hacken.io

