
Customer: Lucrosus Capital
Date: February 11th, 2022

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly
after all vulnerabilities are fixed — upon a decision of the
Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Lucrosus Capital.

Approved by Andrew Matiukhin | CTO Hacken OU
Type ERC20 token
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://git.apploversoftware.com/lucrosus/luca_token
Commit 55f4bd0e2fbea731087a5f74e85818db113a037a
Technical
Documentation

YES

JS tests YES
Website https://www.lucrosus.capital/
Timeline 28 JANUARY 2022 – 11 FEBRUARY 2022
Changelog 03 FEBRUARY 2022 – INITIAL AUDIT

11 FEBRUARY 2022 – SECOND REVIEW

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 8

Audit overview 9

Conclusion 10

Disclaimers 11

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Lucrosus Capital (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contract and its code review conducted between January 28th, 2022 - February
11th, 2022.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://git.apploversoftware.com/lucrosus/luca_token
Commit:

55f4bd0e2fbea731087a5f74e85818db113a037a
Technical Documentation: Yes

-https://docs.lucrosus.capital/
-https://lucrosus-production.s3.eu-central-1.amazonaws.com/store/Lucr

osus+Capital+WhitePaper.pdf
JS tests: Yes/No? + link
Contracts:

EIP712.sol
ERC20.sol
ERC20Internal.sol
ERC2612.sol
ERC3009.sol
IERC20.sol
Ownable.sol
Recover.sol
Selfdestruct.sol
Token.sol

www.hacken.io

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency manipulation
▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

www.hacken.io

Executive Summary

According to the assessment, the Customer's smart contracts are secured.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during
automated analysis were manually reviewed, and important vulnerabilities
are presented in the Audit overview section. All found issues can be found
in the Audit overview section.

As a result of the audit, security engineers found 1 medium and 1 low
severity issue.

After the second review security engineers found that in the
ERC20.allowance contract method override modifier was added and two
comments were removed from the Token contract. However, no more changes
were made therefore we still have 1 medium and 1 low severity issue.

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io

Audit overview

Critical

No critical issues were found.

High

No high severity issues were found.

Medium

Costly operations inside the loop.

In the specified function there is a loop that continuously updates
state variables in the loop.

Contract: Token.sol

Functions: massImport

Recommendation: It would be much more sufficient to get state
variables into the memory local variables, update them in the loop
and store them to the state after the loop.

Low

State variables that could be declared constant.

Constant state variables should be declared constant to save gas.

Contract: Recoverable

Variables: ERR_NOTHING

Recommendation: Add the constant attribute to state variables that
never change.

www.hacken.io

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other
issues in the reviewed code.

As a result of the audit, security engineers found 1 medium and 1 low
severity issue.

After the second review security engineers found that in the
ERC20.allowance contract method override modifier was added and two
comments were removed from the Token contract. However, no more changes
were made therefore we still have 1 medium and 1 low severity issue.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and
producing this report, it is important to note that you should not rely on
this report only — we recommend proceeding with several independent audits
and a public bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

www.hacken.io

