
Customer: Pluto Digital, ​​YOP protocol
Date: February 17th, 2022

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly
after all vulnerabilities are fixed — upon a decision of the
Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Pluto Digital, ​​YOP protocol.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Vault; Staking
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/plutodigital/yop-protocol-evm
Commit 63a94637eaa423a111cd3d98b5875f8c32fa6182
Technical
Documentation

YES

JS tests YES
Website https://plutodigital.com/

https://yop.finance/
Timeline 18 JANUARY 2022 – 17 FEBRUARY 2022
Changelog 10 FEBRUARY 2022 – INITIAL AUDIT

17 FEBRUARY 2022 – SECOND REVIEW

www.hacken.io

https://github.com/plutodigital/yop-protocol-evm
https://plutodigital.com/
https://yop.finance/

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 7

Audit overview 8

Conclusion 11

Disclaimers 12

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Pluto Digital, ​​YOP protocol
(Customer) to conduct a Smart Contract Code Review and Security Analysis.
This report presents the findings of the security assessment of the
Customer's smart contract and its code review conducted between January
18th, 2022 - February 17th, 2022.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/plutodigital/yop-protocol-evm
Commit:

63a94637eaa423a111cd3d98b5875f8c32fa6182
Technical Documentation: Yes

1. Whitepaper:
https://cdn.yop.finance/wp-content/uploads/2022/01/26140053/YOP_White
paper_final.pdf

2. Tech docs
https://github.com/plutodigital/yop-protocol-evm/tree/main/docs

JS tests: Yes
- https://github.com/plutodigital/yop-protocol-evm/tree/main/test

Contracts:
access/AccessControlManager.sol
access/AllowAnyAccessControl.sol
access/AllowListAccessControl.sol
access/ERC1155AccessControl.sol
access/PerVaultGatekeeper.sol
fees/FeeCollection.sol
libraries/ConvertUtils.sol
rewards/YOPRewards.sol
security/BasePauseableUpgradeable.sol
staking/Staking.sol
strategies/BaseStrategy.sol
strategies/ConvexBase.sol
strategies/ConvexBtc.sol
strategies/ConvexEth.sol
strategies/ConvexStable.sol
strategies/CurveBase.sol
strategies/CurveBtc.sol
strategies/CurveEth.sol
strategies/CurveStable.sol
vaults/roles/Gatekeeperable.sol
vaults/roles/Governable.sol
vaults/roles/Manageable.sol
vaults/BaseVault.sol
vaults/CommonHealthCheck.sol
vaults/SingleAssetVault.sol
vaults/SingleAssetVaultBase.sol
vaults/VaultDataStorage.sol
vaults/VaultMetaDataStore.sol

www.hacken.io

https://cdn.yop.finance/wp-content/uploads/2022/01/26140053/YOP_Whitepaper_final.pdf
https://cdn.yop.finance/wp-content/uploads/2022/01/26140053/YOP_Whitepaper_final.pdf
https://github.com/plutodigital/yop-protocol-evm/tree/main/docs
https://github.com/plutodigital/yop-protocol-evm/tree/main/test

vaults/VaultStrategyDataStore.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency manipulation
▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

www.hacken.io

Executive Summary

According to the assessment, the Customer's smart contracts are
well-secured.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during
automated analysis were manually reviewed, and important vulnerabilities
are presented in the Audit overview section. All found issues can be found
in the Audit overview section.

As a result of the audit, security engineers found 1 medium and 6 low
severity issues.

After the second review security engineers found that an additional
interface support check was added to the adding new strategies, flash loan
possibility was removed by putting a restriction to the user to transfer
any tokens in the same block when tokens are minted and low issues were
also addressed. Therefore security engineers didn’t find any security
issues with the updated code.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io

Audit overview

Critical

No critical issues were found.

High

No high severity issues were found.

Medium

Tokens could be used for Flash Loan Attack

While the deposit function mints ERC20 tokens as shares in exchange
for the depositing tokens, in the case both tokens are trading on the
DEXes, this could be used in the Flash Loan Attack.

Contracts: SingleAssetVault.sol

Function: deposit, withdraw

Recommendation: Consider adding vesting in at least 1 block to the
given ERC20 token, so it couldn’t be used for any transactions within
the same block.

Status: Fixed.

Low

1. Excess “approve” calls

Switching DEX from Uni to Sushi will make it to approve assets
spending for DEX each time, even if it’s already approved.

Contract: CurveBase.sol

Function: switchDex

Recommendation: Consider saving the state of the approvals.

Status: Fixed.

2. Function state mutability can be restricted to pure

View functions that don’t access the state could be declared as pure
to save some gas.

Contracts: CurveBtc.sol, CurveEth.sol, CurveStable.sol, CurveBase.sol

Function: _getCoinsCount, _getWantTokenIndex

Recommendation: Please use the “pure” modifier for view functions that
don’t access the state.

www.hacken.io

Status: Fixed.

3. State variables could be defined as immutable

State variables that don’t change their values and are initialized in
the constructor should be defined as immutable to save gas.

Contract: CurveStable.sol

Variable: wantThreepoolIndex

Recommendation: Please use the “immutable” modifier for state
variables that never change and are initialized in the constructor.

Status: Fixed.

4. State variables could be defined as constant

State variables that don’t change their values should be defined as
constant to save gas.

Contract: CurveStable.sol

Variable: N_POOL_COINS

Recommendation: Please use the “constant” modifier for state variables
that never change.

Status: Fixed.

5. Unused function parameters
- Contract: Staking.sol
Function: _beforeTokenTransfer
Parameters: _operator, _amounts, _data
- Contract: SingleAssetVault.sol
Function: _authorizeUpgrade
Parameters: implementation
- Contract: CurveBase.sol
Function: adjustPosition
Parameters: _debtOutstanding
- Contract: CurveBase.sol
Function: prepareMigration
Parameters: _newStrategy
- Contract: BaseVault.sol
Function: _beforeTokenTransfer
Parameters: _amount
- Contract: BaseStrategy.sol
Function: tendTrigger
Parameters: callCost

Recommendation: While it’s an overridden method you may just remove
the variable name, leaving the definition in place (ie. function

www.hacken.io

_beforeTokenTransfer(address, address _from, address _to, uint256[]
memory _ids, uint256[] memory, bytes memory) internal override).

Status: Fixed.

6. Unused local variable

Contract: CurveStable.sol

Function: _depositLPTokens

Variable: balance

Recommendation: Please remove unused local variable.

Status: Fixed.

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other
issues in the reviewed code.

As a result of the audit, security engineers found 1 medium and 6 low
severity issues.

After the second review security engineers found that an additional
interface support check was added to the adding new strategies, flash loan
possibility was removed by putting a restriction to the user to transfer
any tokens in the same block when tokens are minted and low issues were
also addressed. Therefore security engineers didn’t find any security
issues with the updated code.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and
producing this report, it is important to note that you should not rely on
this report only — we recommend proceeding with several independent audits
and a public bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

www.hacken.io

