
Customer: TravelCare
Date: March 1st, 2022

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly
after all vulnerabilities are fixed — upon a decision of the
Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
TravelCare.

Approved by Andrew Matiukhin | CTO Hacken OU
Type ERC20 token
Platform BSC
Language Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Deployed
contract

https://bscscan.com/address/0x826e5ec70dbc5607ff9218011fbb97f9a
8d97953#code

Technical
Documentation

YES

JS tests NO
Website https://travelcare.io/travel-token/
Timeline 23 FEBRUARY 2022 - 1 MARCH 2022
Changelog 1 MARCH 2022 – INITIAL AUDIT

www.hacken.io

https://bscscan.com/address/0x826e5ec70dbc5607ff9218011fbb97f9a8d97953#code
https://bscscan.com/address/0x826e5ec70dbc5607ff9218011fbb97f9a8d97953#code
https://travelcare.io/travel-token/

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Conclusion 11

Disclaimers 12

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by TravelCare (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and
its code review conducted between February 23rd, 2022 - March 1st, 2022.

Scope

The scope of the project is smart contracts on BSC chain with address:
Contract:
https://bscscan.com/address/0x826e5ec70dbc5607ff9218011fbb97f9a8d97953#code
Technical Documentation: Yes
JS tests: No
Contracts:

TravelCare.sol
IERC20Metadata.sol
Context.sol
ERC20.sol
IERC20.sol
Ownable.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

www.hacken.io

https://bscscan.com/address/0x826e5ec70dbc5607ff9218011fbb97f9a8d97953#code

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency manipulation
▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are
well-secured.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril, SmartCheck, Solgraph, Slither. All issues
found during automated analysis were manually reviewed, and important
vulnerabilities are presented in the Audit overview section. All found
issues can be found in the Audit overview section.

As a result of the audit, security engineers found 9 low severity issues.

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io

Audit overview

Critical

No critical issues were found.

High

No high severity issues were found.

Medium

No high severity issues were found.

Low

1. External imports used but files are present locally.
Contract TravelCare.sol

import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";

Recommendation: Change to local imports:

import { ERC20 } from "./ERC20.sol";

import { IERC20 } from "./IERC20.sol";

import { Ownable } from "./Ownable.sol";

2. Contract ERC20.sol, function transferFrom
It’s better to execute check and update allowance before _transfer()
function call.
Recommendation: Move _transfer() to the end of function (after require
and unchecked).

3. Ambiguous tokens amount for Pink Flamingo holders.
There is required amount of 210 tokens in the documentation but 1000
tokens amount is used in code.
Recommendation: Review your requirements and update either code or
documentation.

4. Empty function invocation

www.hacken.io

_beforeTokenTransfer function is empty therefore when its executed –
nothing happens.
This functions is invoked in: _transfer(), ​​_mint(), _burn().

Recommendation:

To save gas on contract deployment and execution we recommend to
remove this function and all its invocations.

5. Call of changeRewardRequirements() method affects only the
future reward type assignments and does not change the reward types
for current users rewards.
Recommendation:
Pay attention to this logic if it is supposed to work in such way. Fix
if required. Maybe you want to update user reward type each time you
update the requiremenents for any of reward type.

6. Not latest solidity version used.

Recommendation: The latest version is 0.8.12. It’s recommended to use
it.

7. Unused function
Contract Context.sol. Function _msgData is unused.
Recommendation: Delete _msgData function from the contract.

8. Code duplication
The code from TravelCare.sol _transfer function

require(

sender != address(0),

"ERC20::_transfer: transfer from the zero address"

);

require(

recipient != address(0),

"ERC20::_transfer: transfer to the zero address"

);

duplicates the code from ERC20.sol _transfer function

require(sender != address(0), "ERC20: transfer from the zero address");

require(recipient != address(0), "ERC20: transfer to the zero address");

www.hacken.io

Recommendation: Remove code duplication from TravelCare.sol _transfer
function.

9. Some functions are declared as public instead of being declared
external.

- ERC20.name()

- ERC20.symbol()

- ERC20.decimals()

- ERC20.totalSupply()

- ERC20.balanceOf()

- ERC20.transfer()

- ERC20.allowance()

- ERC20.approve()

- ERC20.transferFrom()

- ERC20.increaseAllowance(

- ERC20.decreaseAllowance()

- Ownable.renounceOwnership()

- Ownable.transferOwnership()
Recommendation: public functions that are never called by the contract
should be declared external to save gas.

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other
issues in the reviewed code.

As a result of the audit, security engineers found 9 low severity issues.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and
producing this report, it is important to note that you should not rely on
this report only — we recommend proceeding with several independent audits
and a public bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

www.hacken.io

