
Customer: BlockSquare
Date: March 8, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
BlockSquare

Approved By Marcin Ugarenko | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token; Staking

Platform EVM

Language Solidity

Methodology Link

Website https://blocksquare.io/

Changelog
13.01.2023 – Initial Review
02.02.2023 – Second Review
09.02.2023 - Third Review
08.03.2023 - Fourth Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://blocksquare.io/

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12
Critical 12

C01. Requirements Violation 12
High 12

H01. Non-Finalized Code 12
H02. Denial of Service Vulnerability 12
H03. Use of Hard-Coded Values 12

Medium 13
M01. Unscalable Functionality - Shadowing State Variables 13
M02. Best Practice Violation - Unchecked Transfer 13
M03. Unscalable Functionality - Bad Variable Naming 13
M04. Contradiction - Missing Validation 14

Low 14
L01. Unfinished NatSpec 14
L02. Ignoring Solidity Time Unit Suffixes 14
L03. Style Guide Violation 15
L04. Unused Function Parameters 15
L05. NatSpec Comments Contradiction 15
L06. Unused Variables 15
L07. Typo in the Error Message 16
L08. Unindexed Events 16
L09. Functions that Can Be Declared External 16
L10. Code Inconsistency - Use of Libraries 16
L11. Code Inconsistency - Use of Modifiers 17
L12. SPDX License Identifier Not Provided in a Source File 17
L13. Excessive State Variable Access 17
L14. Functions that Can Be Declared External 17
L15. Typo in Code 18
L16. Style Guide Violation 18
L17. Style Guide Violation 18
L18. Style Guide Violation 19

Disclaimers 20

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by BlockSquare (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository https://github.com/blocksquare/LPStaking-Audit

Commit 08f6760a66c8e490a550202a8d504d0adf1f21cc

Functional
Requirements

https://github.com/blocksquare/LPStaking-Audit/blob/main/READ
ME.md

Technical
Requirements

https://github.com/blocksquare/LPStaking-Audit/blob/main/READ
ME.md

Contracts File: ./contracts/LPStaking.sol
SHA3:
ba3dc2589ec504078fd4cca73d027dd5447dbcc7d6d2af3ae7a8f32f231e4064

Second review scope
Repository https://github.com/blocksquare/LPStaking-Audit

Commit 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c

Functional
Requirements

https://github.com/blocksquare/LPStaking-Audit/blob/main/READ
ME.md

Technical
Requirements

https://github.com/blocksquare/LPStaking-Audit/blob/main/READ
ME.md

Contracts File: ./contracts/LPStaking.sol
SHA3:
6b3beb5e8635a1176bb092a507fa088f17cf98ff35c2e02ee672298c0e9a63b2

Third review scope
Repository https://github.com/blocksquare/LPStaking-Audit

Commit ec432b10e47e69377cad4421db93ed429af79492

Functional
Requirements

https://github.com/blocksquare/LPStaking-Audit/blob/main/READ
ME.md

Technical
Requirements

https://github.com/blocksquare/LPStaking-Audit/blob/main/READ
ME.md

Contracts File: ./contracts/LPStaking.sol
SHA3:
f189785f5a63606b9a255057612d2473d6df1185f291b763f8ea130d73a7ecaa

www.hacken.io
4

https://github.com/blocksquare/LPStaking-Audit
https://github.com/blocksquare/LPStaking-Audit
https://github.com/blocksquare/LPStaking-Audit

Fourth review scope
Repository https://github.com/blocksquare/LPStaking-Audit

Commit 8c02c0c9484b73faa5b4f642ab229809c8597ee7

Functional
Requirements

https://github.com/blocksquare/LPStaking-Audit/blob/main/READ
ME.md

Technical
Requirements

https://github.com/blocksquare/LPStaking-Audit/blob/main/READ
ME.md

Contracts File: ./contracts/LPStaking.sol
SHA3:
9ae6274a50111e6809c16ccb0eb1b6197391fa49bf161a826d1df7560790f816

www.hacken.io
5

https://github.com/blocksquare/LPStaking-Audit

Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor Gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● Functional requirements are partially missed.
● Technical description is provided.
● The code is extensively documented using NatSpec.

Code quality
The total Code Quality score is 8 out of 10.

● Test coverage is insufficient.
● CEI pattern violations are masked by nonReentrant.

Test coverage
Code coverage of the project is 69.23% (branch coverage).

● Not all negative scenarios are covered.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.4.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

13 January 2023 13 4 3 1

02 February 2023 3 0 0 0

09 February 2023 0 0 0 0

08 March 2023 0 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Not Relevant

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Not Relevant

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

www.hacken.io
9

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Not Relevant

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
10

System Overview

LPStaking is a staking system allowing to stake ERC20 tokens (“LP”) for the
reward in the form of another token (“Reward Token”).

Privileged roles
● The Smart Contract has an Owner role, but its usage is limited to

serving as a parameter for indexing events.

Risks
● No substantial risks were identified.

www.hacken.io
11

Findings

Critical

C01. Requirements Violation

The execution logic of `getBoost()` does not conform with the
Technical Requirements: “If user lock below minimum they get boost of
1 (or no boost)”, while the code returns 100.

This can lead to incorrect calculations in the
`_updateBeforeStakeStart()` function.

Path:
./contracts/LPStaking.sol : getBoost()

Recommendation: The `getBoost()` function should be finalized.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

High

H01. Non-Finalized Code

The code contains TODO comments. It means that the code is not
finalized, and additional changes will be introduced in the future.

This can lead to incorrect implementation.

Path:
./contracts/LPStaking.sol : _updateAtStakeEnd()

Recommendation: The code should be finalized, and all TODO comments
should be addressed.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

H02. Denial of Service Vulnerability

The `withdraw()` function calls the _updateAtStakeEnd() private
function, which in turn makes unchecked subtractions potentially
leading to Denial of Service through underflow error.

Path:
./contracts/LPStaking.sol : _updateAtStakeEnd()

Recommendation: Implement a check that the state variables in
`_updateAtStakeEnd()` never get smaller than the subtraction operand.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

H03. Use of Hard-Coded Values

It is assumed that when the user makes a deposit, the `_minDays`
state variable will be used to check if the `numberOfDays` parameter

www.hacken.io
12

is not too small; however, a hardcoded value `2` is used instead.
This may possibly be a coding mistake.

Path:
./contracts/LPStaking.sol : deposit()

Recommendation: The state variable `_minDays` should be used instead
of the hardcoded value, or a new constant should be declared.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

Medium

M01. Unscalable Functionality - Shadowing State Variables

State variables should not be shadowed in order to keep abstraction
levels clear. In the `initialize()` function, one of the parameters
is named `owner`. The parent Smart Contract `OwnableUpgradeable.sol`
already has a member `owner` in the form of a function. Functions in
Solidity can be addressed without the parentheses, so this can lead
to confusion. The same issue is detected with the `name` and `symbol`
parameters, under which name also exists a function inside the parent
contract `ERC20Upgradeable.sol`.

Path:
./contracts/LPStaking.sol : initialize()

Recommendation: Rename the `owner`, `name` and `symbol` parameters.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

M02. Best Practice Violation - Unchecked Transfer

It is considered following best practices to avoid unchecked transfer
functions, which can potentially lead to DoS vulnerabilities.

Path:
./contracts/LPStaking.sol : addReward(), withdraw(), deposit()

Recommendation: Follow common best practice: use the OpenZeppelin’s
`SafeERC20.sol` library and replace `transfer()` calls with
`safeTransfer()` and `transferFrom()` to `safeTransferFrom()`.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

M03. Unscalable Functionality - Bad Variable Naming

Undocumented usage of variables named `tLP�, `sLP� and
`_tLPBalanceThis` overwhelm code and makes further development
difficult.

Path:
./contracts/LPStaking.sol

www.hacken.io
13

Recommendation: Provide variable names according to their purposes.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

M04. Contradiction - Missing Validation

According to documentation, there should be a check if `numberOfDays
>= maxDays` which must always return `maxBoost` in the `getBoost()`
function. This can lead to incorrect values when calling the function
directly. In the code, this is mitigated by checking in the
`deposit()` function.

Path:
./contracts/LPStaking.sol : getBoost()

Recommendation: Provide an additional check for condition
`numberOfDays >= maxDays`.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

Low

L01. Unfinished NatSpec

It is recommended that the code should be kept clean and properly
documented with NatSpec. There are multiple functions, structs, and
public storage variables that are missing proper NatSpec
documentation.

Path:
./contracts/LPStaking.sol

Recommendation: NatSpec documentation best practices should be
followed. For reference:

https://docs.soliditylang.org/en/v0.8.17/natspec-format.html#document
ation-example

https://dev.to/perelynsama/natspec-the-right-way-to-comment-ethereum-
smart-contracts-1b0c

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

L02. Ignoring Solidity Time Unit Suffixes

When dealing with converting time units (exception: years) to
seconds, it is generally recommended to use built-in suffixes.

Path:
./contracts/LPStaking.sol

Recommendation: Replace the usage of `_DAY_TO_SECONDS� constant to
inline `days` suffix. For reference:

https://docs.soliditylang.org/en/v0.8.17/units-and-global-variables.h
tml?highlight=days#time-units

www.hacken.io
14

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

L03. Style Guide Violation

Function order is incorrect, external function can not go after
external view function.

Path:
./contracts/LPStaking.sol

Recommendation: Move `external` function before `external view`
function. Reference:

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#order-of-fu
nctions

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

L04. Unused Function Parameters

The code contains an overridden function with unused, yet named
parameters.

Path:
./contracts/LPStaking.sol : _transfer()

Recommendation: Remove the names of the parameters to show explicitly
that the parameters are not going to be used and are only intended to
override an inherited function. For reference:

https://docs.soliditylang.org/en/v0.8.17/contracts.html#function-para
meters

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

L05. NatSpec Comments Contradiction

The NatSpec comments of the function deposit() contradict the name of
the parameter: the comments say `Number of weeks you want to stake`
while the name of the parameter is `numberOfDays`.

Path:
./contracts/LPStaking.sol : deposit()

Recommendation: Change comments to represent the real meaning of the
parameter.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

L06. Unused Variables

The constant `_EIGHTEEN_DECIMALS� is never accessed, the state
variable `_rewardVesting` is never used.

www.hacken.io
15

Path:
./contracts/LPStaking.sol

Recommendation: Remove the state variables `_EIGHTEEN_DECIMALS� and
`_rewardVesting`.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

L07. Typo in the Error Message

The error message mentions "LPStaking: Couldn't transfer LI". The
term “LI” is not described in the technical docs and never appears
again in the code. This is likely a typo.

Path:
./contracts/LPStaking.sol : deposit(),

Recommendation: Correct spelling of “LI” to “LP” or provide an
explanation in NatSpec.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

L08. Unindexed Events

The event `LPStakingInit` has no indexed fields.

Path:
./contracts/LPStaking.sol

Recommendation: Having indexed parameters in the events makes it
easier to search for these events using indexed parameters as
filters.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

L09. Functions that Can Be Declared External

“public” functions that are never called by the contract should be
declared “external” to save Gas.

Path:
./contracts/LPStaking.sol : getUnclaimedReward()

Recommendation: Declare the mentioned function as “external”.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

L10. Code Inconsistency - Use of Libraries

ReentrancyGuardUpgradeable should be used with upgradable contracts.
With ReentrancyGuard the _status will be 0. So the first nonReentrant
check will be 20k Gas more expensive.

Path:
./contracts/LPStaking.sol

www.hacken.io
16

Recommendation: ReentrancyGuardUpgradeable should be used instead of
ReentrancyGuard.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

L11. Code Inconsistency - Use of Modifiers

According to the OpenZeppelin library, `_disableInitializers()`
should be used in the constructor and not the `initializer` modifier.

Path:
./contracts/LPStaking.sol : constructor()

Recommendation: Remove `initializer`, replace it with
`_disableInitializers()`.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

L12. SPDX License Identifier Not Provided in a Source File

Before publishing, consider adding a comment containing
"SPDX-License-Identifier: <SPDX-License>" to each source file. Use
"SPDX-License-Identifier: UNLICENSED" for non-open-source code.

Path:
./contracts/LPStaking.sol

Recommendation: Add SPDX License Identifier.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

L13. Excessive State Variable Access

It is not recommended to read the state at each code line. It would
be much more Gas effective to store the state value into the local
memory variable and use it for reading. Emitting the `LPStakingInit`
event in the initializer can be done using function parameters
instead of reading from the storage.

Path:
./contracts/LPStaking.sol : initializer()

Recommendation: Use function parameters `minDays`, `maxDays`,
`minBoost`, `maxBoost` when emitting the `LPStakingInit` event in the
initializer.

Status: Fixed
(revised commit: 78ee4cd280c3e4c1bc4f43d6f0900c586b6b715c)

L14. Functions that Can Be Declared External

“public” functions that are never called by the contract should be
declared “external” to save Gas.

Path:
./contracts/LPStaking.sol : getLockedUntil(), getConfiguration()

www.hacken.io
17

Recommendation: Declare the mentioned function as “external”.

Status: Fixed
(revised commit: ec432b10e47e69377cad4421db93ed429af79492)

L15. Typo in Code

The constant `_MINIUM_LOCK_DAYS� contains a typo.

Path:
./contracts/LPStaking.sol : _MINIUM_LOCK_DAYS

Recommendation: Rename the constant to `_MINIMUM_LOCK_DAYS�.

Status: Fixed
(revised commit: ec432b10e47e69377cad4421db93ed429af79492)

L16. Style Guide Violation

The code violates the following style guide rule: “External functions
can not go after a private function”.

Path:
./contracts/LPStaking.sol

Recommendation: Follow the official style guide:

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#order-of-fu
nctions

Move “external” functions before “public” functions and “public”
before “private”. Within a grouping, “view” and “pure” functions
should come last.

Status: Fixed
(revised commit: ec432b10e47e69377cad4421db93ed429af79492)

L17. Style Guide Violation

The source file contains non-standard formatting of SPDX License
Identifier. The license identifier should follow the standard in
order to be machine readable and be supplied to bytecode metadata
after deployment.

Path:
./contracts/LPStaking.sol

Recommendation: Follow the official style guide:

https://docs.soliditylang.org/en/v0.8.18/layout-of-source-files.html#
spdx-license-identifier

Use the following format of SPDX License Identifier:
// SPDX-License-Identifier: UNLICENSED

Status: Fixed
(revised commit: 8c02c0c9484b73faa5b4f642ab229809c8597ee7)

www.hacken.io
18

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#order-of-functions
https://docs.soliditylang.org/en/v0.8.17/style-guide.html#order-of-functions

L18. Style Guide Violation

The code violates the following style guide rule: “internal pure
function can not go after private function”.

Path:
./contracts/LPStaking.sol

Recommendation: Follow the official style guide:

https://docs.soliditylang.org/en/v0.8.18/style-guide.html#order-of-fu
nctions

Move “internal” functions before “private” functions. Within a
grouping, “view” and “pure” functions should come last.

Status: Fixed
(revised commit: 8c02c0c9484b73faa5b4f642ab229809c8597ee7)

www.hacken.io
19

https://docs.soliditylang.org/en/v0.8.18/style-guide.html#order-of-functions
https://docs.soliditylang.org/en/v0.8.18/style-guide.html#order-of-functions

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
20

