
Customer: BotPlanet
Date:     April 06th, 2022



This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
BotPlanet.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type of Contracts DEX Core

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://www.botpla.net/

Timeline 16.02.2022 – 06.04.2022

Changelog 23.03.2022 – Initial Review
06.04.2022 – Revise

www.hacken.io

https://www.botpla.net/


Table of contents
Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 7

Findings 8

Disclaimers 9

www.hacken.io



Introduction

Hacken OÜ (Consultant) was contracted by BotPlanet (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/BOTDeFi/botdex-contracts-core
Commit:

215e8490d064f5d8e674e049fdde73fe59ce3559
Technical Documentation: Yes
(https://www.botpla.net/wp-content/uploads/2022/02/White-Paper.pdf;
https://docs.google.com/document/d/1WMOkMi4xAX7MburhZyQ8wy6Axmyf9xXtpnvL15y
uNgs/edit)
JS tests: Yes (link)/No?
Contracts:

interfaces/IBotdexCallee.sol
interfaces/IBotdexERC20.sol
interfaces/IBotdexFactory.sol
interfaces/IBotdexPair.sol
interfaces/IERC20.sol
libraries/Math.sol
libraries/UQ112x112.sol
test/ERC20.sol
BotdexERC20.sol
BotdexPair.sol
BotdexFactory.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ EIP standards violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency

www.hacken.io

https://www.botpla.net/wp-content/uploads/2022/02/White-Paper.pdf
https://docs.google.com/document/d/1WMOkMi4xAX7MburhZyQ8wy6Axmyf9xXtpnvL15yuNgs/edit
https://docs.google.com/document/d/1WMOkMi4xAX7MburhZyQ8wy6Axmyf9xXtpnvL15yuNgs/edit


Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency
▪ Kill-Switch Mechanism

www.hacken.io



Executive Summary

Score measurements details can be found in the corresponding section of the
methodology.

Documentation quality
The customer provided a whitepaper as functional requirements and a short
description of functions as technical requirements. Counting that the
implementation is a 1-to-1 clone of the UniswapV2-core which is fully
documented, the total Documentation Quality score is 8 out of 10.

Code quality
Total CodeQuality score is 8 out of 10. The code is a copy of the
UniswapV2-core codebase. Some parts are improved some are increased gas
usage.

Architecture quality
The architecture quality score is 9 out of 10. The architecture is standard
for DEX core. Improved for the factory to contain the “INIT_CODE_PAIR_HASH”
constant.

Security score
As a result of the audit, security engineers found no security issues. The
security score is 10 out of 10. All found issues are displayed in the
“Issues overview” section of the report.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.5

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io



Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

1. Tests failed

Two tests of 32 are failed. Both tests are for gas usage:
`createPair:gas` and `swap:gas`.

Scope: testing

Recommendation: please make sure all tests are passing.

Status: Fixed (Revised Commit: 215e849)

Low

1. Floating solidity version

It is recommended to specify the exact solidity version in the
contracts.

Contracts: all

Recommendation: please specify exact solidity version (ex. pragma
solidity 0.8.4 instead of pragma solidity >=0.8.0).

Status: Fixed (Revised Commit: 215e849)

2. SPDX license identifier not provided in a source file.

Before publishing, consider adding a comment containing
"SPDX-License-Identifier: <SPDX-License>" to each source file. Use
"SPDX-License-Identifier: UNLICENSED" for non-open-source code.
Please see https://spdx.org for more information.

Contracts: all

Recommendation: add SPDX-license identifiers.

Status: Fixed (Revised Commit: 215e849)

www.hacken.io



Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io


