
Customer: BotPlanet
Date: April 07th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
BotPlanet.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type of Contracts DEX; Farms; Staking; MasterChef

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://website.com

Timeline 16.02.2022 – 07.04.2022

Changelog 23.03.2022 – Initial Review
07.04.2022 – Revise

www.hacken.io

https://website.com

Table of contents
Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 8

Findings 9

Disclaimers 12

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by BotPlanet (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/BOTDeFi/botdex-contracts-farm
Commit:

e22a94489331fafe13f6ff1170aeb7c579190192
Technical Documentation: Yes
(https://www.botpla.net/wp-content/uploads/2022/02/White-Paper.pdf;
https://docs.google.com/document/d/1WMOkMi4xAX7MburhZyQ8wy6Axmyf9xXtpnvL15y
uNgs/edit)
JS tests: Yes (test)
Contracts:

pancake-swap/interfaces/IPancakeFactory.sol
pancake-swap/libraries/FullMath.sol
pancake-swap/libraries/PancakeOracleLibrary.sol
pancake-swap/libraries/Babylonian.sol
pancake-swap/WETH.sol
BotdexStaking.sol
test/BOTToken.sol
pancake-swap/libraries/FixedPoint.sol
libs/Multicall2.sol
libs/Multicall.sol
pancake-swap/interfaces/IWETH.sol
pancake-swap/libraries/UQ112x112.sol
pancake-swap/PancakeRouter01.sol
test/BOTTokenTest.sol
pancake-swap/interfaces/IPancakeRouter02.sol
libs/rocketswap-lib/access/Ownable.sol
pancake-swap/PancakeFactory.sol
libs/rocketswap-lib/access/Context.sol
libs/token/IBEP20.sol
pancake-swap/PancakeRouter.sol
libs/WBNB.sol
libs/rocketswap-lib/utils/Address.sol
pancake-swap/interfaces/IPancakeCallee.sol
libs/MockBEP20.sol
pancake-swap/PancakePair.sol
libs/token/SafeBEP20.sol
pancake-swap/RocketToken.sol
pancake-swap/interfaces/IPancakeERC20.sol
pancake-swap/libraries/BitMath.sol
pancake-swap/libraries/TransferHelper.sol
pancake-swap/PancakeERC20.sol
libs/rocketswap-lib/math/SafeMath.sol
RocketPropellantToken.sol

www.hacken.io

https://www.botpla.net/wp-content/uploads/2022/02/White-Paper.pdf
https://docs.google.com/document/d/1WMOkMi4xAX7MburhZyQ8wy6Axmyf9xXtpnvL15yuNgs/edit
https://docs.google.com/document/d/1WMOkMi4xAX7MburhZyQ8wy6Axmyf9xXtpnvL15yuNgs/edit

pancake-swap/libraries/PancakeLibrary.sol
libs/token/BEP20.sol
libs/Migrations.sol
MasterBotdex.sol
pancake-swap/interfaces/IPancakePair.sol
interfaces/IMasterBotdex.sol
pancake-swap/libraries/Math.sol
pancake-swap/interfaces/IPancakeRouter01.sol
interfaces/PancakeVoteProxy.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ EIP standards violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency
▪ Kill-Switch Mechanism

www.hacken.io

Executive Summary

Score measurements details can be found in the corresponding section of the
methodology.

Documentation quality
The customer provided a whitepaper as functional requirements and a short
description of functions as technical requirements. Counting that the
implementation is a partial clone of the PancakeSwap farms which is fully
documented, the total Documentation Quality score is 8 out of 10.

Code quality
Total CodeQuality score is 8 out of 10. Parts of the code are a copy of the
PancakeSwap farms' codebase. Some parts are improved some are increased gas
usage.

Architecture quality
The architecture quality score is 10 out of 10. Clean and functional.

Security score
As a result of the audit, security engineers found 1 medium severity issue.
The security score is 8 out of 10. All found issues are displayed in the
“Issues overview” section of the report.

Summary
According to the assessment, the Customer's smart contract has the
following score: 8.2

Notices

1. The owner can withdraw all LP tokens from the MasterBotdex contract
by setting the migrator contract.

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

1. Possible rewards lost or receive more

Changing allocPoint in the MasterBotdex.set method while _withUpdate
flag set to false may lead to rewards lost or receiving rewards more
than deserved.

Contract: MasterBotdex.sol

Function: set

Recommendation: Please call updatePool(_pid) in the case if
_withUpdate flag is false and you don’t want to update all pools.

Status: Fixed (Revised Commit: e22a944)

Medium

1. Privileged ownership

The owner of the MasterBotdex contract has permission to
updateMultiplier, add new pools, change the pool’s allocation points
and set migrator contract (which will move all LPs from the pool to
itself) without community consensus.

Contract: MasterBotdex.sol

Recommendation: Please consider using one of the following
methodologies:

- Transfer ownership to Time-lock contract with reasonable
latency (ie. 24h) so the community may react to changes;

- Transfer ownership to a multi-signature wallet, to prevent a
single point of failure;

- Transfer ownership to DAO so the community could decide whether
the privileged operations should be executed by voting.

Status: Not Fixed (Revised Commit: e22a944)

Low

1. Unnecessary operations

When allocPoint is not changed for the pool, there is still an
assignment for a new value, which just consumes gas doing nothing.

Contract: MasterBotdex.sol

Function: set

Recommendation: Please move “poolInfo[_pid].allocPoint = _allocPoint”
assignment inside the if block.

www.hacken.io

Status: Fixed (Revised Commit: e22a944)

2. Missing Emit Events

Functions that change critical values should emit events for better
off-chain tracking.

Contract: MasterBotdex.sol

Function: setMigrator, updateMultiplier

Recommendation: Consider adding events when changing critical values,
and emit them in the function.

Status: Fixed (Revised Commit: e22a944)

3. Using solidity time units

Solidity provides time unit suffixes to use to describe a time in
seconds.

Contract: BotdexStaking.sol

Constant: YEAR

Recommendation: consider using time unit suffixes
(ie. YEAR = 365 days).

Status: Fixed (Revised Commit: e22a944)

4. Unused structure field

The structure has a field `stakeAmount` which is neither set nor
accessed.

Contract: MasterBotdex.sol

Structure: UserInfo

Recommendation: remove unused field.

Status: Fixed (Revised Commit: e22a944)

5. Floating solidity version

It is recommended to specify the exact solidity version in the
contracts.

Contracts: all

Recommendation: please specify exact solidity version (ex. pragma
solidity 0.8.7 instead of pragma solidity ^0.8.7).

Status: Fixed (Revised Commit: e22a944)

6. SPDX license identifier not provided in a source file.

Before publishing, consider adding a comment containing
"SPDX-License-Identifier: <SPDX-License>" to each source file. Use
"SPDX-License-Identifier: UNLICENSED" for non-open-source code.
Please see https://spdx.org for more information.

www.hacken.io

Contracts: all

Recommendation: add SPDX-license identifiers.

Status: Fixed (Revised Commit: e22a944)

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

