
Customer: Metagamz
Date: February 18th, 2022

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly
after all vulnerabilities are fixed — upon a decision of the
Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Metagamz.

Approved by Andrew Matiukhin | CTO Hacken OU
Type ERC20 token; Vesting
Platform Avalanche / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/avnishmishra04/MetagamZ
Commit bbcc0341d584ddbfe46d0e9e5ae957a100158b6b
Deployed
contract

1. https://snowtrace.io/address/0x43d141d7e4e9bd76851ac707b9
b55bb9cf90c8aa

2. https://snowtrace.io/address/0xf0b5d0f2c999f95e03a363a58e
b44e88cb620404

Technical
Documentation

YES

JS tests NO
Website https://metagamz.io/

Timeline 11 FEBRUARY 2022 – 18 FEBRUARY 2022
Changelog 18 FEBRUARY 2022 – INITIAL AUDIT

www.hacken.io

https://github.com/avnishmishra04/MetagamZ
https://snowtrace.io/address/0x43d141d7e4e9bd76851ac707b9b55bb9cf90c8aa
https://snowtrace.io/address/0x43d141d7e4e9bd76851ac707b9b55bb9cf90c8aa
https://snowtrace.io/address/0xf0b5d0f2c999f95e03a363a58eb44e88cb620404
https://snowtrace.io/address/0xf0b5d0f2c999f95e03a363a58eb44e88cb620404
https://metagamz.io/

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 6

Audit overview 7

Conclusion 9

Disclaimers 10

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Metagamz (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and
its code review conducted between February 11th, 2022 - February 18th, 2022.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/avnishmishra04/MetagamZ
Commit:

bbcc0341d584ddbfe46d0e9e5ae957a100158b6b
Technical Documentation: Yes —
https://metagamz.io/wp-content/uploads/2022/01/Metagamez-Whitepaper-2.7_WEB.pdf
JS tests: No
Contracts:

METAG.sol
Vesting.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

www.hacken.io

https://metagamz.io/wp-content/uploads/2022/01/Metagamez-Whitepaper-2.7_WEB.pdf

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency manipulation
▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secured but
the gas usage could be improved.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during
automated analysis were manually reviewed, and important vulnerabilities
are presented in the Audit overview section. All found issues can be found
in the Audit overview section.

As a result of the audit, security engineers found 5 low severity issues.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

www.hacken.io

Audit overview

Critical

No critical issues were found.

High

No high severity issues were found.

Medium

No medium severity issues were found.

Low

1. Using SafeMath on solidity >=0.8.0

Starting Solidity v0.8.0 there’s no need to check for uint to overflow
while mathematical operations because this check is already built-in.

Recommendation: Please either discard SafeMath or use its version
updated to use with Solidity 0.8 or later.

2. Vesting rules not described

While the provided whitepaper contains very specific vesting rules,
the smart contract itself doesn’t specify them. It waits that the
admin will add each rule additionally with separate transactions which
unclear if added rules would match the witepaper or not. At the time
of the audit, the deployed smart contract didn’t have any vesting
rules added.

Contract: TokenVesting

Recommendation: Please consider specifying vesting rules either in the
constructor or initialization function.

3. Access the state variables in the loop

It is not recommended to have read or write access to the state in the
loops because it costs a lot of gas. Right not the internal function
“createVesting” is being called from the “createMultipleVesting” in
the loop. The “createVesting” function is accessing the
“totalVestings” variable multiple times: three times for reading and
once for writing.​​

Contract: TokenVesting

Functions: createMultipleVesting, createVesting

Recommendation: We’d recommend making the “createVesting” function
totally pure and eliminating any state access from it by reading the
“totalVestings” value in the “createMultipleVesting” before the loop

www.hacken.io

and assigning it back after that. Accessing and incrementing should be
done on the local variable, which will save you tons of gas.

4. External calls in the loop

Like as above, there is an external call to the
“ERC20Interface.allowance” and “ERC20Interface.safeTransferFrom”
functions each time the “createVesting” is accessed, which is
definitely not needed​​

Contract: TokenVesting

Functions: createMultipleVesting, createVesting

Recommendation: Please consider summing together all amounts and do
the allowance check and transfer after the loop.

5. Using storage variable

Using the storage variable instead of memory one without any writings
only for multiple reads will just burn excess gas.

Contract: TokenVesting

Functions: claim, suspendLockTransferToReceiver

Recommendation: Please consider using the memory variable placing
instead.

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other
issues in the reviewed code.

As a result of the audit, security engineers found 5 low severity issues.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and
producing this report, it is important to note that you should not rely on
this report only — we recommend proceeding with several independent audits
and a public bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

www.hacken.io

