
Customer: GovWorld
Date: April 13th, 2022

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly
after all vulnerabilities are fixed — upon a decision of the
Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
GovWorld.

Approved by Andrew Matiukhin | CTO Hacken OU
Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type ERC20 token; White Label Exchange
Platform EVM
Language Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/GovWorld/sun-claimboard-contracts
Commit 40860B82E317787FFB9E6BDBB39EE248182C375F - INITIAL AUDIT

613A7E568557547EAF7211502B0B431E6E763FC5 - REMEDIATION CHECK
Deployed
contract

NO

Technical
Documentation

YES -
https://docs.google.com/document/d/1uIowuBkfembXG-qzIHoYg9cZZor
p5LyJXOL7JiDQIyk/edit

JS tests YES -
​​https://github.com/GovWorld/sun-claimboard-contracts/tree/maste
r/test - Connect to preview

Website https://www.govworld.io
Timeline 22 MARCH 2022 – 13 APRIL 2022
Changelog 28 MARCH 2022 – INITIAL AUDIT

05 APRIL 2022 - REMEDIATION CHECK
13 APRIL 2022 - REMEDIATION CHECK 2

www.hacken.io

https://github.com/GovWorld/sun-claimboard-contracts
https://docs.google.com/document/d/1uIowuBkfembXG-qzIHoYg9cZZorp5LyJXOL7JiDQIyk/edit
https://docs.google.com/document/d/1uIowuBkfembXG-qzIHoYg9cZZorp5LyJXOL7JiDQIyk/edit
https://github.com/GovWorld/sun-claimboard-contracts/tree/master/test
https://github.com/GovWorld/sun-claimboard-contracts/tree/master/test
https://www.govworld.io

Table of contents

Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Audit overview 8

Recommendations 9

Disclaimers 10

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by GovWorld (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/GovWorld/sun-claimboard-contracts
Commit:

40860b82e317787ffb9e6bdbb39ee248182c375f - Initial Audit
613a7e568557547eaf7211502b0b431e6e763fc5 - Revised Commit

Technical Documentation: Yes -
https://docs.google.com/document/d/1uIowuBkfembXG-qzIHoYg9cZZorp5LyJXOL7JiD
QIyk/edit
JS tests: Yes -
https://github.com/GovWorld/sun-claimboard-contracts/tree/master/test
Contracts:

SunToken.sol
ClaimBoard.sol
ClaimBoardBase.sol
LaunchpadFactory.sol
LaunchpadBoard.sol
ClaimBoardFactory.sol
TokenFactory.sol
ClaimData.sol
IGovWorldAdminRegistry.sol
IBoard.sol
ITokenFactory.sol
IClaimBoardExtras.sol
IERC20Extras.sol
IClaimBoardFactory.sol
ISunToken.sol

www.hacken.io

https://github.com/GovWorld/sun-claimboard-contracts
https://docs.google.com/document/d/1uIowuBkfembXG-qzIHoYg9cZZorp5LyJXOL7JiDQIyk/edit
https://docs.google.com/document/d/1uIowuBkfembXG-qzIHoYg9cZZorp5LyJXOL7JiDQIyk/edit
https://github.com/GovWorld/sun-claimboard-contracts/tree/master/test

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency manipulation
▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

www.hacken.io

Executive Summary

The score measurements details can be found in the corresponding section of the
methodology.

Documentation quality

The Customer provided detailed functional requirements and technical
requirements. The total Documentation Quality score is 10 out of 10.

Code quality

The total CodeQuality score is 10 out of 10. Code follows official language
style guides. Unit tests were provided.

Architecture quality

The architecture quality score is 10 out of 10. Smart contracts of the
project follow the best practices, and the project has a clear
architecture.

Security score

As a result of the audit, security engineers found 2 medium and 8 low
severity issues. The security score is 10 out of 10. All found issues are
displayed in the “Issues overview” section.

As a result of the remediations review, Customers’ smart contracts contain
2 low severity issues.

As a result of the second remediations review, Customers’ smart contracts
contain no issues.

Summary

According to the assessment, the Customer's smart has the following score:
10.0

Notices

1. SUN Tokens can be burnt by some roles (liquidator and
tokenMarket) that are not in the Audit scope.

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Audit overview

Critical

No critical issues were found.

High

No high issues were found.

Medium

Potential Out-of-Gas Exception

Iterating over user-supplied can consume much Gas as the size of the
array grows.

This could lead to a potential Out-of-Gas exception.

Contracts: ClaimBoardBase.sol, ClaimBoard.sol, LaunchBoard.sol,
ClaimBoardFactory.sol,

Function: addAllocationLaunchPad(), constructor(),
deployClaimBoard(),

Recommendation: add an array size limit.

Status: Fixed

Low

1. Missing Empty String Check

While distributions are being configured, the contract only checks if
string lengths for token name and symbol are equal. Empty strings can
meet this condition.

Contracts: ClaimBoardBase.sol

Function: configureDistributions()

Recommendation: In addition to checking the length, whether these
strings are filled or not should be checked.

Status: Fixed

2. Use of Hardcoded Values

Hardcoded values are being used in calculations.

Contracts: ClaimBoardBase.sol

Function: addAllocations(), getClaimableAmountbyRound(), getDays(),

Recommendation: Move hardcoded values to constants.

www.hacken.io

Status: Fixed

3. Missing Zero Address Check

Parameters of address type should be checked for potential zero
address before use.

Contracts: ClaimBoard.sol, LaunchBoard.sol,

Function: constructor(),

Recommendation: Implement a zero address check.

Status: Fixed

4. Check Should be Performed Outside of the Loop

Checking address and totalAmounts lengths in a loop over and over
again consume unnecessary Gas.

Contracts: ClaimBoard.sol,

Function: addAllocationLaunchPad()

Recommendation: Move check outside the loop.

Status: Fixed

5. Floating Pragma

The project uses floating pragma ^0.8.0.

Contracts: SunToken.sol, ClaimBoard.sol, LaunchpadFactory.sol,
LaunchpadBoard.sol, ClaimBoardFactory.sol, TokenFactory.sol,
ClaimData.sol , IGovWorldAdminRegistry.sol, IBoard.so,
ITokenFactory.so, IClaimBoardExtras.so, IERC20Extras.so,
IClaimBoardFactory.so, ISunToken.sol

Function: -

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed

6. Functions that can be Declared as external

In order to save gas, public functions that are never called in the
contract should be declared as external.

Contracts: SunToken.sol, ClaimBoard.sol, ClaimBoardFactory.sol,
TokenFactory.sol, ClaimBoardBase.sol, LaunchBoard.sol

www.hacken.io

Function: name(), symbol(), decimals(), totalSupply(), balanceOf(),
transfer(), allowance(), approve(), transferFrom(),
increaseAllowance() , burn(), burnFrom(), pause(), unpause(),
claimSunToken(), claimAllNative(), activateClaimBoard(),
claimTokenLaunchpadWallets(), withdrawLaunchPadWallet(),
LaunchBoard.activateClaimBoard(), setLiquidator(), setTokenMarket(),
setClaimBoard()

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed

7. Function that can be Declared as internal or private

External calls to the same contract are expensive in terms of Gas
consumption.

Contracts: ClaimBoardBase.sol

Function: canClaim()

Recommendation: Change function visibility.

Status: Fixed

8. Incorrect Solidity Version

Using an old version prevents access to new Solidity security checks.

Contracts: SunToken.sol, ClaimBoard.sol, LaunchpadFactory.sol,
LaunchpadBoard.sol, ClaimBoardFactory.sol, TokenFactory.sol,
ClaimData.sol , IGovWorldAdminRegistry.sol, IBoard.so,
ITokenFactory.so, IClaimBoardExtras.so, IERC20Extras.so,
IClaimBoardFactory.so, ISunToken.sol

Function: -

Recommendation: Consider using one of these versions: 0.8.4, 0.8.6.

Status: Fixed

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

