
Customer: LunaFi Technologies Ltd
Date: April 18, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
LunaFi Technologies Ltd.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type of Contracts ERC-20 token; Staking

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website www.lunafi.io

Timeline 24.03.2022 – 14.04.2022

Changelog
28.03.2022 – Initial Review
07.04.2022 – Revising
18.04.2022 – Revising

www.hacken.io

http://www.lunafi.io/

Table of contents
Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 6

Findings 7

Disclaimers 10

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by LunaFi Technologies Ltd (Customer)
to conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

The second review was conducted on April 07th, 2022.

The third review was conducted on April 14th, 2022.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/Luna-Fi/lunafi-smart-contracts
Commit:

6ff9a601e9bc72326b8e89f69daaa3105ed6afb0
Technical Documentation: Yes
JS tests: Yes
Contracts:

./contracts/LFIToken.sol

./contracts/VLFI.sol

./contracts/claimToken.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ EIP standards violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency
▪ Kill-Switch Mechanism

www.hacken.io

Executive Summary

The score measurements details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided brief functional requirements and technical
documentation. The total Documentation Quality score is 6 out of 10.

Code quality
The total Code Quality score is 5 out of 10. The code is partially
commented. Unit tests have medium coverage. The contracts have the
following coverage: LFIToken.sol 23.26%, VLFI.sol 43.97%, claimToken.sol
75%, vesting.sol 94.19%.

After the second review, the code is found to be well-commented, and unit
tests were improved. The total Code Quality score is 7 out of 10

Architecture quality
The architecture quality score is 10 out of 10. The project has clear and
clean architecture.

Security score
As a result of the audit, security engineers found 4 high, 1 medium, and 3
low severity issues. Security score is 0 out of 10. All found issues are
displayed in the “Issues overview” section.

After the second review, the code contains 1 high and 1 low severity issue.
The security score is 5 out of 10.

After the third review, the code contains no issue. The security score is
10 out of 10.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.3

Notices

1. The staking contract implementation may be updated by the contract
owner. The current audit covers only implementation from the scope.

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

1. Vesting funds are not guaranteed.

The vesting contract creates all the vesting schedules by calling
`createVestingSchedule` function from the constructor, but the
`createVestingSchedule` function logic does not guarantee that the
contract has enough funds for vesting payment.

Contracts: vesting.sol

Function: createVestingSchedule

Recommendation: Add a statement to the `createVestingSchedule`
function to check if the contract has enough funds. Create a function
to add a batch of predefined vestings schedules after the contract
deployment.

Status: Fixed

2. Staking liquidity funds safety is not guaranteed by the contract
logic.

The VLFI.sol contract has the `transferToTreasury` function, which
allows an account with the manager role to withdraw staking liquidity
funds to any account. It is expected to be possible to withdraw less
than `maxWithdrawalLiquidity` percent of the `liquidity` value, but
the `transferToTreasury` function does not update the `liquidity`
value.

An account with a manager role may call the function till all the
funds are not withdrawn.

Contracts: VLFI.sol

Function: transferToTreasury

Recommendation: Update `liquidity` value inside `transferToTreasury`
function.

Status: Fixed

3. Admin may burn users' funds.

The contracts have functions that allow the admin to burn tokens from
any account, not only from the admin account.

Contracts: claimToken.sol

Function: burn

Recommendation: Update the function's logic to allow burning funds
only from the admin account or burn tokens only when a user provides
approval for this.

www.hacken.io

Status: Fixed

4. Admin may mint an unlimited amount of tokens.

The contract has a function that allows the admin to mint any amount
of tokens to any account.

Contracts: claimToken.sol

Function: mint

Recommendation: Update the function logic to allow minting tokens
before `totalSupply` limit or specify unlimited mint behavior in
public documentation.

Status: Fixed

Medium

1. Redundant function argument.

The function has two arguments. `value` argument is the value of the
permitted amount of tokens that may be spent, and `LFIamount` is the
number of tokens that should be staked.

There is no sense in permitting using more tokens than it should be
staked.

Contracts: VLFI.sol

Function: permitAndStake

Recommendation: Remove one of the arguments.

Status: Fixed

Low

1. Redundant use of SafeMath library.

SafeMath is not needed starting with Solidity 0.8. The compiler has
built-in overflow checking.

Contracts: LFIToken.sol

Recommendation: Do not use SafeMath in the contract.

Status: Fixed

2. Use of magic number.

The vesting contracts interact with the token contract. The tokens'
contract address is passed to the constructor, but the local
`decimals` variable does not get value from the contract.
Accidentally vesting contract may operate with a wrong decimal value,
which may lead to the funds lost.

Contracts: vesting.sol

Function: constructor

www.hacken.io

Recommendation: Get `decimals` value from the token contract external
function.

Status: Fixed

3. Unexpected output.

According to the vesting contract logic, itis possible to create
multiple vesting schedules for one address, but the
`getVestingScheduleByAddress` function logic suspects that one
address may have only one assigned vesting.

Contracts: vesting.sol

Function: getVestingScheduleByAddress

Recommendation: Update the `getVestingScheduleByAddress` function
logic, or add a statement to check to `createVestingSchedule` if the
vesting with the same recipient exists.

Status: Fixed

4. Redundant functions.

The LFIToken has unused internal functions: `_mint`, `_burn`.

Contracts: LFIToken.sol

Function: _mint, _burn

Recommendation: Remove unused functions.

Status: Fixed

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

