
Customer: Pera
Date: April 05th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Pera.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type of Contracts ERC20 token; Staking; Yield Farming

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://www.pera.finance

Timeline 16.03.2022 – 05.04.2021

Changelog 23.03.2022 – Initial Review
05.04.2022 – Remediations Check

www.hacken.io

https://www.pera.finance

Table of contents
Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Findings 8

Disclaimers 12

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Pera (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:
Repository:

Initial Review
https://github.com/perafinance/peraplatform/commit/2e02b430c7641121e8

053cf6718087115a5cf9d5 - Pera Farming
https://github.com/perafinance/pera-staking/commit/952230ed67a040c9b0

f37b20511385fbf61195f5 - Pera Staking
Remediation Check
https://github.com/perafinance/peraplatform/
https://github.com/perafinance/pera-staking/

Commit:
Initial Review
952230ed67a040c9b0f37b20511385fbf61195f5 - Pera Staking
2e02b430c7641121e8053cf6718087115a5cf9d5 - Pera Farming
Remediation Check
e1a34b8e51ec9564ea934c659642b099e8732808 - Pera Staking
7969ae040763fb3e882ac731882676d09d024036 - Pera Farming

Technical Documentation: Yes -
https://www.pera.finance/info/PeraFinanceNewDeck.pdf
JS tests: Yes
Contracts:

PeraStaking.sol
TradeFarming.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ EIP standards violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency

www.hacken.io

https://github.com/perafinance/peraplatform/commit/2e02b430c7641121e8053cf6718087115a5cf9d5
https://github.com/perafinance/peraplatform/commit/2e02b430c7641121e8053cf6718087115a5cf9d5
https://github.com/perafinance/pera-staking/commit/952230ed67a040c9b0f37b20511385fbf61195f5
https://github.com/perafinance/pera-staking/commit/952230ed67a040c9b0f37b20511385fbf61195f5
https://github.com/perafinance/peraplatform/
https://github.com/perafinance/pera-staking/
https://www.pera.finance/info/PeraFinanceNewDeck.pdf

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency
▪ Kill-Switch Mechanism

Executive Summary

Score measurements details can be found in the corresponding section of the
methodology.

Documentation quality
The Customer provided superficial functional requirements and no technical
requirements. Total Documentation Quality score is 3 out of 10.

Code quality
The total CodeQuality score is 5 out of 10. Code follows best practices.
Unit tests were provided. Test coverage is very low and does not check for
multiple user-related cases.

Architecture quality
The architecture quality score is 10 out of 10. Both projects follow
recommended design patterns and best practices. Projects have clean and
clear structures.

Security score
As a result of the audit, security engineers found 5 high, 4 medium, and 5
low severity issues. The security score is 0 out of 10. All found issues
are displayed in the “Issues overview” section.

As a result of the remediations review, Customer’s smart contracts contain
2 medium and 3 low severity issues. The security score is 10 out of 10

Summary
According to the assessment, the Customer's smart contract has the
following score: 8.8

1.
www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Findings

Critical

No critical issues were found.

High

1. Undocumented owner functionality

The owner can withdraw all tokens from the contract. This behavior is
not mentioned in the provided documentation.

Contracts: PeraStaking.sol

Function: withdrawTokens()

Recommendation: remove the function or provide the description in the
documentation.

Status: Fixed

2. Potential DoS Risk

Iteration over the activeRewards array can consume much Gas as the
size of the array grows.

This could lead to potential Denial of Service.

Contracts: PeraStaking. sol

Function: updateReward()

Recommendation: the contract design should be changed to avoid data
updates for all its users during one single call.

Status: Mitigated

3. Potential Reward Token Balance Shortage

Rewards in all available tokens are transferred during one call. If
there is at least one token whose balance is insufficient, the whole
call will fail.

Contracts: PeraStaking. sol

Function: claimAllRewards()

Recommendation: allow to claim rewards one by one or by batches
provided by a caller.

Status: Mitigated

www.hacken.io

4. Missing Reward Balance Update

claimAllRewards function does not decrease totalRewardBalance after
reward transfer to a user.

This can lead to an incorrect reward token balance. If the staking
and reward tokens are the same, this can lead to the usage of
deposited funds as reward funds.

Contracts: TradeFarming. sol

Function: claimAllRewards()

Recommendation: Decrease totalRewardBalance during rewards claiming.

Status: Mitigated

5. Reward and Staking Token Balances Should be Separate

The contract should separate reward and staking token balances.

In the case of these tokens being the same, this could lead to the
use of staking tokens in the name of reward tokens.

Contracts: PeraStaking. sol

Function: -

Recommendation: Review and check this logic.

Status: Fixed

Medium

1. Missing Allowance Check

The safeTransferFrom function is being called in other functions, but
they never check if there is enough allowance prior to calling it.

This can lead to reverts in the calling functions.

Contracts: PeraStaking. sol, TradeFarming.sol

Function: depositRewards(), swapExactTokensForETH (),
swapTokensForExactETH(), swapETHForExactTokens(),
swapExactETHForTokens()

Recommendation: Add control mechanisms for allowances. Adjust the
allowance before calling the safeTransferFrom function

Status: Mitigated

www.hacken.io

2. Revert due to transfer Function Gas Limitation

The swapETHForExactTokens functions cannot be called from another
contract with a fallback function. This is because the transfer
function has a hardcoded Gas upper limit, used in the refunding
logic.

This can lead to limitations in the system.

Contracts:TradeFarming.sol

Function: swapETHForExactTokens()

Recommendation: Use the call function, which allows the caller to
send all the Gas.

Status: Reported

3. Unused Return

There are calls to EnumerableSet.UintSet’s functions but return
values of these calls are ignored.

This can lead to unexpected behaviors in the function execution.

Contracts: TradeFarming. sol

Function: swapExactETHForTokens(), swapETHForExactTokens(),
swapExactTokensForETH(), swapTokensForExactETH()

Recommendation: Implement control mechanisms.

Status: Reported

Low

1. Missing Zero Address Validation

The constructor and depositRewardTokens take address parameters but
do not check if they are zero address.

This can lead to unwanted external calls to 0x0.

Contracts: TradeFarming.sol

Function: constructor() and depositRewardTokens()

Recommendation: Implement zero address checks.

Status: Fixed

www.hacken.io

2. Unused State Variable

Field `MAX_UINT� is never used.

Contracts: TradeFarming.sol

Function: -

Recommendation: Remove unused variable.

Status: Fixed

3. Use of Hardcoded Values

The constructor and mulDiv functions use hardcoded values in their
computations.

In PeraStaking.sol contract, withdraw, calcWeight, and _decrease
functions use hardcoded values in their computations.

Contracts: TradeFarming.sol, PeraStaking.sol

Function: withdraw(), calcWeight(), _decrease(), constructor(),
mulDiv()

Recommendation: Move hardcoded values to constants.

Status: Reported

4. Functions That Can be Declared as external

To save Gas, public functions that are never called in the contract
should be declared as external.

Contracts: PeraStaking.sol

Function: calcWeight()

Recommendation: Aforementioned function should be declared as
external.

Status: Reported

5. Floating Pragma

The PeraStaking.sol, and TradeFarming.sol contracts use floating
pragma ^0.8.11

Contracts: PeraStaking.sol, TradeFarming.sol

Function: -

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment

Status: Reported

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

