
Customer: Wombat Exchange
Date: April 20th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Wombat Exchange.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type of Contracts ERC20 token; Exchange; Staking

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://wombat.exchange

Timeline 10.03.2022 – 20.04.2022

Changelog
24.03.2022 – Initial Review
04.04.2022 – Revise
20.04.2022 – Revise

www.hacken.io

https://wombat.exchange

Table of contents
Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 8

Findings 9

Recommendations 12

Disclaimers 13

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Wombat Exchange (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/wombat-exchange/wombat
Commit:

8a0e9cb9806f8d3ba7df96bf07f6e61a65389c4b
Technical Documentation: Yes
(https://www.wombat.exchange/Wombat_Whitepaper_Public.pdf; README.md)
JS tests: Yes (test)
Contracts:

wombat-governance/libraries/DSMath.sol
wombat-core/pool/Pool.sol
wombat-governance/MasterWombat.sol
wombat-core/libraries/SafeCast.sol
wombat-core/asset/AggregateAccount.sol
wombat-peripheral/token/WombatERC20.sol
wombat-governance/VeERC20Upgradeable.sol
wombat-core/pool/CoreV2.sol
wombat-governance/Whitelist.sol
wombat-peripheral/vesting/TokenVesting.sol
wombat-governance/libraries/LogExpMath.sol
wombat-core/libraries/SignedSafeMath.sol
wombat-core/asset/Asset.sol
wombat-governance/VeWom.sol
wombat-core/pool/PausableAssets.sol
wombat-core/libraries/DSMath.sol

www.hacken.io

https://www.wombat.exchange/Wombat_Whitepaper_Public.pdf

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ EIP standards violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency
▪ Kill-Switch Mechanism

www.hacken.io

Executive Summary

The score measurements details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided a Whitepaper and technical documentation with a
high-level design diagram. However, no flows, sequences, or tech specs were
provided. The total Documentation Quality score is 7 out of 10.

Code quality
The total CodeQuality score is 8 out of 10. Code duplications. Unit tests
were provided. Good NatSpec coverage. Lots of useful comments.

Architecture quality
The architecture quality score is 7 out of 10. Logic is split across files.
Functions are overwhelmed with template code that could be moved to
separate functions and be reused.

Security score
As a result of the audit, security engineers found 1 low severity issue.
The security score is 10 out of 10. All found issues are displayed in the
“Issues overview” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 8.2

Notices

1. The owner can withdraw all rewards (wom) from the MasterWombat
contract.

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

No medium severity issues were found.

Low

1. A declaration shadows an existing declaration.

Shadowed declarations could make a code not obvious and may lead to
inconsistencies.

- uint256 haircut @Pool.sol#719
shadows the return variable @Pool.sol:728

- return variable exchangeRate @Pool.sol#745
shadows the function @Pool.sol:745

- uint256 tipBucketBalance @Pool.sol#770
shadows the function @Pool.sol:757

- uint256 tipBucketBalance @Pool.sol#789
shadows the function @Pool.sol:757

Contract: Pool.sol

Recommendation: rename corresponding variables.

Status: Fixed (Revised Commit: f3349a4)

2. Interface function virtual declaration.

All interface functions are implicitly “virtual”. No need to add a
corresponding keyword.

Interface: IAsset.sol

Function: underlyingTokenDecimals

Recommendation: remove the keyword “virtual”.

Status: Fixed (Revised Commit: f3349a4)

3. Constructor visibility.

Starting solidity compiler version 0.7 there is no need to declare
the constructor visibility anymore because it is ignored.

Contract: WombatERC20.sol

Recommendation: remove constructor visibility.

Status: Fixed (Revised Commit: f3349a4)

www.hacken.io

4. Unused function parameter.

Function parameter `to` is not used in the code.

Contract: Pool.sol

Function: _swap

Recommendation: remove the declaration of the parameter. If it needs
the consistency parameter, remove just the name while leaving the
type declaration.

Status: Fixed (Revised Commit: f3349a4)

5. A function could be declared as `view`.

The function that does not update any state should be declared as
`view` to save gas.

Contract: PausableAssets.sol

Function: requireAssetPaused

Recommendation: add the keyword `view` to the function declaration.

Status: Fixed (Revised Commit: f3349a4)

6. A function could be declared as `pure`.

The function that neither updates nor access any state should be
declared as `pure` to save gas.

Contracts: Pool.sol, VeWom.sol

Functions: _checkLiquidity, _checkAddress, _checkSameAddress,
_checkAmount, _expectedVeWomAmount

Recommendation: add the keyword `view` to the function declaration.

Status: Only the `_expectedVeWomAmount` was fixed

7. Unused state variable.

The internal state variable declared in the contract is never used in
the contract itself.

Contracts: Asset.sol

Variable: reserved

Recommendation: remove unused variable.

Status: Fixed (Revised Commit: f3349a4)

8. A public function that could be declared external.

Public functions that are never called by the contract should be
declared external.

Contracts: MasterWombat.sol, VeERC20Upgradeable.sol, VeWom.sol

www.hacken.io

Variable: MasterWombat.add, MasterWombat.set,
MasterWombat.emergencyWithdraw, VeERC20Upgradeable.name,
VeERC20Upgradeable.symbol, VeERC20Upgradeable.decimals,
VeWom.initialize

Recommendation: use the external attribute for functions never called
from the contract.

Status: Fixed (Revised Commit: f3349a4)

9. Using library.

While it is declared to use a SignedSafeMath for int256, there is no
need to call the SignedSafeMath implicitly in the code. It is
recommended to write the call as a direct function call from the
variable itself.

Contracts: CoreV2.sol

Functions: _solveQuad, exactDepositLiquidityInEquilImpl,
withdrawalAmountInEquilImpl

Recommendation: call the function from the int256 variable directly
(i.e.: l.sqrt(b) instead of SignedSafeMath.sqrt(l, b)).

Status: Fixed (Revised Commit: 8a0e9cb)

www.hacken.io

Recommendations

1. Follow solidity code style guidelines.
2. It is good to have more tech docs.

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

