

Customer: Wonder Hero
Date: December 24th, 2021

www.hacken.io

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Wonder Hero.

Approved by Andrew Matiukhin | CTO Hacken OU
Type ERC721 tokens; Staking
Platform Polygon / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/devwonderhero/wonder-hero-contract-audit
Commit 455354ec6aefa997aa6554c41631c9116691e414
Technical
Documentation

NO

JS tests NO
Website wonderhero.io
Timeline 13 DECEMBER 2021 – 24 DECEMBER 2021
Changelog 24 DECEMBER 2021 – INITIAL AUDIT

www.hacken.io

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 8

Audit overview 9

Conclusion 12

Disclaimers 13

 	

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Wonder Hero (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and its
code review conducted between December 13th, 2021 - December 24th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/devwonderhero/wonder-hero-contract-audit
Commit:

455354ec6aefa997aa6554c41631c9116691e414
Technical Documentation: No
JS tests: No
Contracts:

WonderAccount.sol
WonderMeta.sol
WonderOperator.sol
WonderOperatorETH.sol
access/WonderRoles.sol
box/WonderBoxClub.sol
box/BadgeBoxClub.sol
box/WonderBoxClubETH.sol
interface/IAccount.sol
interface/IWonderMarketPlace.sol
interface/IWonderOperatorETH.sol
interface/INFTStaking.sol
interface/IMarketLp.sol
interface/IFeeDistribution.sol
interface/IWonderBoxClub.sol
interface/IWonderMarketPlaceETH.sol
interface/IWonderOperator.sol
interface/IBoxNFT.sol
interface/IWonderBox.sol
interface/IWonderBoxClubETH.sol
interface/ISellAble.sol
interface/IWonderTicket.sol
interface/IWonderERC20.sol
interface/IMetaData.sol
interface/IWonderRoles.sol
interface/IGameNFT.sol
interface/IStakeAbleNFT.sol
interface/IBadge.sol
interface/IReferralShip.sol
libraries/WonderHeroSign.sol
marketplace/WonderMarketPlaceETH.sol
marketplace/WonderMarketPlace.sol
marketplace/MarketLP.sol
referralShip/FeeDistribution.sol
referralShip/ReferralShip.sol
staking/NFTStaking.sol
staking/NFTStakingLP.sol
staking/WonderTicket.sol

www.hacken.io

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence

▪ Style guide violation
▪ Costly Loop

▪ ERC20 API violation
▪ Unchecked external call

▪ Unchecked math
▪ Unsafe type inference

▪ Implicit visibility level
▪ Deployment Consistency

▪ Repository Consistency
▪ Data Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization

▪ Escrow manipulation
▪ Token Supply manipulation

▪ Assets integrity
▪ User Balances manipulation

▪ Data Consistency manipulation
▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

	

www.hacken.io

Executive Summary

According to the assessment, the Customer's smart contracts are well-secured. 	

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented
in the Audit overview section. All found issues can be found in the Audit
overview section.

As a result of the audit, security engineers found 7 low severity issues.

Notice:

PRNG using in contract BadgeBoxClub.sol is vulnerable to attacks from
malicious miners and should not be used to make decisions that could affect
real assets. Even if a malicious user is not able to mine a block, it’s still
possible to precalculate results and select a time slot that is more
beneficial in terms of outcome. (Block time on Polygon chain is only ~2
seconds and is pretty stable, so there are plenty of options to select from)

You are here

Insecure Poor secured Secured Well-secured

www.hacken.io

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

	

www.hacken.io

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

No medium severity issues were found.

 Low

1. The function iterates over or returns an array of unpredictable size

Contracts: WonderRoles.sol

Functions: getAddressList, transferGasToOperators, getBalanceList,
getBalance

Gas consumption grows with array size and starting from a certain size
function could become inoperable.

Recommendation: limit _addressList[] size

2. Redundant code

Contracts: ReferralShip.sol

Functions: getReferral

Code block inside if statement is equal to code block outside of if
statement

Recommendation: change function

3. Boolean equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Contracts: BadgeBoxClub.sol, WonderBoxClub.sol, WonderMarketPlace.sol

Functions: migrate, claimWonderBox, dealNFT

Recommendation: remove the equality to the boolean constant.

www.hacken.io

4. State variables that could be declared constant

Constant state variables should be declared constant to save gas.

Contracts: WonderOperatorETH.sol, WonderBoxClubETH.sol,
FeeDistribution.sol

Variables: buyFee, productIdIndex, ONE, marketFeeRate

Recommendation: Add the constant attributes to state variables that
never change.

5. Missing event for changing startTime, duration, _startTime,
_perUserMaxCount, _duration, _roles, referralShip, startTime,
finishTime, ticketPeriod, totalCount, ticketPrice, withdrawFee,
marketPlaceEth, distributionAddr, marketPlace, wonderBoxContract,
metaContract, _wonderRoles

Contracts: BadgeBoxClub.sol, WonderBoxClubETH.sol, WonderBoxClub.sol,
FeeDistribution.sol, WonderTicket.sol, WonderOperatorETH.sol,
WonderOperator.sol, NFTStaking.sol

Functions: setPeriod, setBasic, setRoles, setReferralShip,
setWithdrawFee, setMarketPlace, setFeeDistribution, setWonderBox,
setWonderMeta, setAuth

Changing critical values should be followed by the event emitting for
better tracking off-chain.

Recommendation: Please emit events on the critical values changing.

6. Using SafeMath in Solidity >= 0.8.0

Starting solidity version 0.8.0 arithmetic operations revert on
underflow and overflow. There’s no more need to assert the result of
operations.

Contracts: NFTStaking.sol

Recommendation: Please avoid using assert for arithmetic operations.

7. A public function that could be declared external.

www.hacken.io

public functions that are never called by the contract
should be declared external to save gas.

Contracts: BadgeBoxClub.sol, FeeDistribution.sol, MarketLP.sol,
NFTStaking.sol, NFTStakingLP.sol, ReferralShip.sol,
WonderAccount.sol, WonderBoxClub.sol, WonderBoxClubETH.sol,
WonderHeroSign.sol, WonderMarketPlace.sol, WonderMarketPlaceETH.sol,
WonderMeta.sol, WonderOperator.sol, WonderOperatorETH.sol,
WonderRoles.sol

Functions: addChainIds, addMeta, batchRegister, claimBadge, clearMeta,
getEndTime, getRoles, getStartTime, setPeriod, calWinFee, init, burn,
getLpInfo, initialize, mint, setLpInfo, getAuth, getBasicInfo,
getSupportLpAddress, isSupportStake, burn, mint, setAuth, getReferral,
getReferralFee, addItems, costItems, getAccount, getProperty,
setAccountStatus, setDetail, toggleGlobalTransfer, upgradeAccount,
claimWonderBox, claimFee, claimToken, deposit, getProduct,
getStartTime, getUserLeft, getRoles, setRoles, getSignerV2,
verifyPersonal, cancelNFT, dealNFT, buyNFTClient, claimFee,
claimToken, dealNFTClient, getCurrency, setFeeDistribution,
getSupportLpAddress, isSupport, ownerOf, sellNFT, addNftMeta,
getChangeLevelCountByKind, getChangeLevelCount, getChangeMetaById,
getChangeMetaByKind, getLevelCountByKind, getLevelCount,
getLevelMetaById, getLevelMetaByKind, getNftMetaByIndex, getNftMeta,
setChangeMeta, setLevelMeta, setNFTMeta, cancelNFTOperator, changeNFT,
claimFee, claimToken, dealNFTOperator, depositOperator, depositClient,
init, payWithdrawFee, withdrawClient, getOrderInfo, init,
openWonderBox, sellNFTOperator, upgradeNFT, useItem, win,
withdrawOperator, claimFee, claimGas

Recommendation: Use the external attribute for functions never called
from the contract.

	

	

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other issues
in the reviewed code.

As a result of the audit, security engineers found 7 low severity issues.

Notice:

PRNG using in contract BadgeBoxClub.sol is vulnerable to attacks from
malicious miners and should not be used to make decisions that could affect
real assets. Even if a malicious user is not able to mine a block, it’s still
possible to precalculate results and select a time slot that is more
beneficial in terms of outcome. (Block time on Polygon chain is only ~2
seconds and is pretty stable, so there are plenty of options to select from)

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered as a sufficient assessment regarding the utility
and safety of the code, bug-free status, or any other statements of the
contract. While we have done our best in conducting the analysis and producing
this report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

