
Customer: ZOA
Date: April 26th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for ZOA.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type ERC20 tokens

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website

Timeline 21.04.2022 – 26.04.2022

Changelog 23.04.2022 – Initial Review
26.04.2022 – Second Review

www.hacken.io

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12

Disclaimers 14

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by ZOA (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/zoa-game-p2e/zoa-token/tree/master
Commit:

ad3f7a10ae992ea152d464b9be6fa1ca2512b0f9
Technical Documentation: Yes
JS tests: Yes
(https://github.com/hknio/zoa-token-460173551/tree/master/test)
Contracts:

File: ./contracts/avax/ZOAToken.sol
SHA3: 5fb7da752286f24435768d66a4e894facc25ae05edd5ac38089de99b6feb9cb7

File: ./contracts/bsc/external/UniswapV2Library.sol
SHA3: df24119261a57aa5b7e4d1d0aafb0157b170ed57c6292a926cd23c70b9b6f26d

File: ./contracts/bsc/external/UniswapV3Library.sol
SHA3: 1a5798e8db90b80d966c402368069d18f57eb6906e0c4c8920c501122cfa739b

File: ./contracts/bsc/IPLPS.sol
SHA3: 6f40bde94a344eb73e74a0b45353fb7d51c862dade0bf1f7901a56c20569f564

File: ./contracts/bsc/UsingLiquidityProtectionService.sol
SHA3: 7e1a0a8505e7f075bc8911f3be3d9ec7d369d07128fa1c21c7c5da80ee9ed9ba

File: ./contracts/bsc/ZGOTokenBSC.sol
SHA3: 12b0837d8ffbd78227c0a6004f904b6dad41d367ff1b5a416af4263931443de8

File: ./contracts/bsc/ZOATokenBSC.sol
SHA3: c6045d0920d69fc8f0a6c739d3644da1bfc85b2910d23623ea5492ddb652ca38

File: ./contracts/lib/ERC20Blacklist.sol
SHA3: fcdc16c6b0570605b0bc36e38b9e3ecf4d91e91aa1c50e19c632dbdb53529891

Second review scope
Repository:

https://github.com/zoa-game-p2e/zoa-token/tree/master
Commit:

f2a38a0ddebe2c2c724023b5646d5700b3d40a4f
Technical Documentation: Yes
JS tests: Yes
(https://github.com/hknio/zoa-token-460173551/tree/master/test)
Contracts:

File: ./contracts/avax/ZOAToken.sol
SHA3: 5fb7da752286f24435768d66a4e894facc25ae05edd5ac38089de99b6feb9cb7

www.hacken.io

File: ./contracts/bsc/external/UniswapV2Library.sol
SHA3: df24119261a57aa5b7e4d1d0aafb0157b170ed57c6292a926cd23c70b9b6f26d

File: ./contracts/bsc/external/UniswapV3Library.sol
SHA3: 1a5798e8db90b80d966c402368069d18f57eb6906e0c4c8920c501122cfa739b

File: ./contracts/bsc/IPLPS.sol
SHA3: 6f40bde94a344eb73e74a0b45353fb7d51c862dade0bf1f7901a56c20569f564

File: ./contracts/bsc/UsingLiquidityProtectionService.sol
SHA3: 4465edd282614e9cc39cd1c1c16d941b66feca7a17e14c609c19eaf7e859552e

File: ./contracts/bsc/ZGOTokenBSC.sol
SHA3: 12b0837d8ffbd78227c0a6004f904b6dad41d367ff1b5a416af4263931443de8

File: ./contracts/bsc/ZOATokenBSC.sol
SHA3: c6045d0920d69fc8f0a6c739d3644da1bfc85b2910d23623ea5492ddb652ca38

File: ./contracts/lib/ERC20Blacklist.sol
SHA3: fcdc16c6b0570605b0bc36e38b9e3ecf4d91e91aa1c50e19c632dbdb53529891

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Executive Summary

The score measurements details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided superficial functional requirements and technical
requirements. The total Documentation Quality score is 10 out of 10.

Code quality
The total Code Quality score is 5 out of 10. The project has redundant
code. Unit tests were provided.

Architecture quality
The architecture quality score is 5 out of 10. The project has unoptimized
inheritance logic.

Security score
As a result of the audit, security engineers found 1 medium and 3 low
severity issues. The security score is 10 out of 10.

As a result of the second review, security engineers found no new issues. 1
medium issue from the previous revision was fixed and 1 low issue was
mitigated. As a result, the code contains 2 low issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101 If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102 It is recommended to use a recent
version of the Solidity compiler.

Passed

Floating
Pragma

SWC-103 Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value

SWC-104 The return value of a message call
should be checked.

Not Relevant

Access Control
&
Authorization

CWE-284 Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

SWC-106 The contract should not be destroyed
until it has funds belonging to users.

Not Relevant

Check-Effect-I
interaction

SWC-107 Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Uninitialized
Storage
Pointer

SWC-109 Storage type should be set explicitly if
the compiler version is < 0.5.0.

Not Relevant

Assert
Violation

SWC-110 Properly functioning code should never
reach a failing assert statement.

Not Relevant

Deprecated
Solidity
Functions

SWC-111 Deprecated built-in functions should
never be used.

Passed

Delegatecall
to Untrusted
Callee

SWC-112 Delegatecalls should only be allowed to
trusted addresses.

Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

www.hacken.io

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128

Race
Conditions

SWC-114 Race Conditions and Transactions Order
Dependency should not be possible.

Passed

Authorization
through
tx.origin

SWC-115 tx.origin should not be used for
authorization.

Passed

Block values
as a proxy for
time

SWC-116 Block numbers should not be used for
time calculations.

Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id.

Passed

Shadowing
State Variable

SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness

SWC-120 Random values should never be generated
from Chain Attributes.

Not Relevant

Incorrect
Inheritance
Order

SWC-125 When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2
SWC-126

All external calls should be performed
only to trusted addresses.

Failed

Presence of
unused
variables

SWC-131 The code should not contain unused
variables if this is not justified by
design.

Failed

EIP standards
violation

EIP EIP standards should not be violated. Passed

Assets
integrity

Custom Funds are protected and cannot be
withdrawn without proper permissions.

Passed

User Balances
manipulation

Custom Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency

Custom Smart contract data should be consistent
all over the data flow.

Passed

Flashloan
Attack

Custom When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation

Custom Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

www.hacken.io

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops

Custom Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block gas limit.

Passed

Style guide
violation

Custom Style guides and best practices should
be followed.

Passed

Requirements
Compliance

Custom The code should be compliant with the
requirements provided by the Customer.

Passed

Repository
Consistency

Custom The repository should contain a
configured development environment with
a comprehensive description of how to
compile, build and deploy the code.

Passed

Tests Coverage Custom The code should be covered with unit
tests. Tests coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

www.hacken.io

System Overview

ZOA is a project with a tokens contracts for the gaming ecosystem:
● ZOAToken — ERC-20 token that mints all initial supply to a deployer.

Additional minting is not allowed. The contract is pausable, with
blacklist functionality.
It has the following attributes:

○ Name: Zone of Avoidance
○ Symbol: ZOA
○ Decimals: 18
○ Total supply: 1 000 000 000 tokens.

● ZGOTokenBSC — BEP-20 token with an unlimited supply, blacklist
functionality, and LiquidityProtectionService checks.
It has the following attributes:

○ Name: ZGO
○ Symbol: ZGO
○ Decimals: 18
○ Total supply: 0 tokens initially (unlimited minting).

● ZOATokenBSC — BEP-20 token that mints all initial supply to a
deployer. Additional minting is not allowed. The contract is
pausable, with blacklist functionality.
It has the following attributes:

○ Name: ZOA
○ Symbol: ZOA
○ Decimals: 18
○ Total supply: 1 000 000 000 tokens.

Privileged roles
● The owner of the ZOAToken, ZOATokenBSC, and ZGOTokenBSC contracts may

blacklist any account.
● The owner of the ZOAToken, ZOATokenBSC, and ZGOTokenBSC contracts may

pause the contract.
● The owner of the ZOATokenBSC contract may unlimitedly mint any amount

of tokens.
● The owner of the ZOATokenBSC contract may update the address of the

LiquidityProtectionService contract.

Notes
● The liquidity protection service contract implementation is out of

the audit scope.

www.hacken.io

Findings

Critical

No critical severity issues were found

High

No high severity issues were found.

Medium

1. Unexpected state variable change

The abstract contract UsingLiquidityProtectionService has the
function `revokeBlocked`, which sets the protection flags (e.g.
`unProtected`, `unProtectedExtra`) to `false` after the execution.
This behavior may revert changes after calls to `disableProtection`
or `disableProtectionExtra` function.

The state variables (e.g. `unProtected`, `unProtectedExtra`) may be
changed unexpectedly, which significantly affects the contract
behavior.

Contracts: UsingLiquidityProtectionService.sol

Function: revokeBlocked

Recommendation: Rework the `revokeBlocked` function logic not to
affect the state variables after the execution.

Status: Fixed

Low

1. Missing zero address validation

Address parameters are being used without checking against the
possibility of 0x0 value in the
`LiquidityProtection_setLiquidityProtectionService` function.

This can lead to unwanted external calls to 0x0.

Contracts: UsingLiquidityProtectionService.sol

Function: LiquidityProtection_setLiquidityProtectionService

Recommendation: Add `require` statement to check new address value.

Status: Reported

2. Missing event emitting

Events for critical state changes (e.g. update of
LiquidityProtectionService contract address) should be emitted for
tracking things off-chain.

Contracts: UsingLiquidityProtectionService.sol

Function: LiquidityProtection_setLiquidityProtectionService

www.hacken.io

Recommendation: Create and emit related event.

Status: Mitigated (The event is not emitted by design, to not trigger
any malicious bot)

3. Redundant functions

The abstract contract UsingLiquidityProtectionService has the
redundant functions which wrap the functions and mirror their return
values.

Contracts: UsingLiquidityProtectionService.sol

Function: ProtectionSwitch_manual, ProtectionSwitch_manual_extra

Recommendation: Remove redundant wrapper functions.

Status: Reported

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

