
Customer: Codex
Date:     May 9th, 2022



This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Codex.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type of Contracts Staking

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Timeline 21.03.2022 – 06.05.2022

Changelog
25.03.2022 – Initial Review
14.04.2022 – Revision
27.04.2022 – Revision
09.05.2022 – Revision

www.hacken.io



Table of contents
Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Findings 8

Recommendations 12

Disclaimers 13

www.hacken.io



Introduction

Hacken OÜ (Consultant) was contracted by Codex (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/CDEXonAltHash/Codex-Rewards-Platform
Commit:

d364d0ef9258dd468f8202a352c58724d6b65638
6ec987cf357d337a042e3d4c209f37466f5db220 (revision)
395a888b54cc9fabbaed92bf068ff93ef4f3c433 (revision)
76d404b94ffbfc87b9e7c25633f8de580366778e (revision)

Technical Documentation: Yes
(https://github.com/CDEXonAltHash/Codex-Rewards-Platform/blob/main/readme/c
dex_rewards.sol.md)
JS tests: No
Contract: CDEX_rewards.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ EIP standards violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency
▪ Kill-Switch Mechanism

www.hacken.io

https://github.com/CDEXonAltHash/Codex-Rewards-Platform
https://github.com/CDEXonAltHash/Codex-Rewards-Platform/blob/main/readme/cdex_rewards.sol.md
https://github.com/CDEXonAltHash/Codex-Rewards-Platform/blob/main/readme/cdex_rewards.sol.md


Executive Summary

The score measurements details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided good functional and technical requirements. The total
Documentation Quality score is 10 out of 10.

Code quality
The total CodeQuality score is 5 out of 10. No unit tests were provided.

Architecture quality
The architecture quality score is 10 out of 10. All the logic is clear.

Security score
As a result of the audit, security engineers found 1 medium, and 1 low
severity issue. The security score is 10 out of 10. All found issues are
displayed in the “Issues overview” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.5

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb


Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io



Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io



Findings

Critical

1. Depositing logic is corrupted.

On depositTokens depositedRewardTokens is increasing with a full
amount of tokens (including reserved for loyalty bonuses), but it is
not decreasing on transferring loyalty bonuses. In such a way, it
could lead to double-spending.

Contract: CDEX_rewards.sol

Functions: depositTokens

Recommendation: review and fix this logic.

Status: Fixed (Revised Commit: 6ec987c)

2. Depositing logic is corrupted.

depositedRewardTokens consists of 3 parts: pending rewards, reserved
for paying rewards in future, and not involved tokens. When setting
new reward rates in notifyRewardAmount, the code should use only
reserved and not involved parts, pending rewards must not be touched.

Example: user stakes some assets, tokens are deposited and rewards
are notified, period is finished, rewards could be notified again
despite them should be paid to the user on getReward.

In such a way, setting rates during the staking period may lead to
double spending of pending rewards.

Contract: CDEX_rewards.sol

Functions: notifyRewardAmount

Recommendation: you should separate rewards that users may get for a
passed period and rewards that users are not given yet (rewards that
could be included in new reward rate calculation).

Status: Fixed (Revised Commit: 76d404b)

High

1. Users can get bonuses even if they should not.

The user can stake a small amount of money, but before claiming
rewards add a big amount to get the bonus and then take it back. This
can be easily exploited by using a flash loan service.

Contract: CDEX_rewards.sol

Function: getReward

Recommendation: add the bonus to the reward in updateReward modifier.

Status: Fixed (Revised Commit: 6ec987c)

2. Unsafe functions.
www.hacken.io



If these functions are called when there are any pending rewards, the
logic may be corrupted: current token will be blocked on the
contract; and there would be no new tokens, but the deposited value
will not be zero.

Contract: CDEX_rewards.sol

Functions: setTokenContract, setRankingContract

Recommendation: implement checks to have no pending rewards, force
unstaking function may be implemented for this purpose.

Status: Fixed (Revised Commit: 6ec987c)

3. Unsafe functions.

If these functions are called when there are any pending stakes, the
logic may be corrupted: current token will be blocked on the
contract; and there would be no new tokens, but the deposited value
will not be zero; removing users from new empty ranking service may
fail too.

According to the comment the functions are called only once on
contract creation, so they could be declared as internal.

Contract: CDEX_rewards.sol

Functions: setTokenContract, setRankingContract

Recommendation: make the functions internal.

Status: Fixed (Revised Commit: 76d404b)

Medium

1. Check if transfer and transferFrom have finished successfully

Transfer can fail without reverting transaction according to internal
reasons.

Contract: CDEX_rewards.sol

Functions: stake, withdraw, getReward, depositTokens

Recommendation: check the return value of the functions and revert
the transaction if it is false.

Status: Fixed (Revised Commit: 6ec987c)

2. Violation of ERC-20 standard.

CDEXTokenContract looks like an ERC-20 contract, but it does not
correspond fully.

Contract: CDEX_rewards.sol

Interface: CDEXTokenContract

Recommendation: transfer method should return a boolean value.

www.hacken.io



Status: Fixed (Revised Commit: 6ec987c)

3. Key-value storage is wrongly defined.

In terms of the provided definition, balance is key, and user address
is value, but there could be several users with equal balance.

Contract: CDEX_rewards.sol

Interface: CDEXRankingContract

Recommendation: rename address as key and balance as value, check the
storage implementation.

Status: Fixed (Revised Commit: 6ec987c)

4. Reserving too much money for bonuses.

loyaltyBonusTotal is set as the sum of loyalty bonuses, but only one
of them is applied, so it is enough to set the maximum of them.

Contract: CDEX_rewards.sol

Function: setLoyaltyTiersBonus

Recommendation: calculate loyaltyBonusTotal as the maximum of loyalty
bonuses.

Status: Fixed (Revised Commit: 6ec987c)

5. Wrong ordered loyalty bonuses.

The functions do not check whether parameters are given descending
order. If they would be provided in ascending order the logic of
loyalty bonuses will be corrupted.

Contract: CDEX_rewards.sol

Functions: setLoyaltyTiersBonus, setLoyaltyTiers

Recommendation: implement checks.

Status: Fixed (Revised Commit: 6ec987c)

6. Missing validation of transfer results.

Results of the “transfer” function are ignored.

If the underlying token returns a value instead of throwing, the
contract logic will be broken.

Contract: CDEX_rewards.sol

Functions: stake, withdraw

Recommendation: implement corresponding validations.

Status: new

Low

www.hacken.io



1. Floating pragma

The contracts use floating pragma ^0.4.21.

Contract: CDEX_rewards.sol

Recommendation: consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (Revised Commit: 6ec987c)

2. Unused event

Event Recovered is defined but never used.

Contract: CDEX_rewards.sol

Recommendation: remove this event.

Status: Fixed (Revised Commit: 6ec987c)

3. Functions that can be declared as external

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Contract: CDEX_rewards.sol

Function: setTokenContract, setRankingContract, depositTokens,
notifyRewardAmount

Recommendation: aforementioned should be declared as external.

Status: Fixed (Revised Commit: 6ec987c)

4. Non-essential code

In order to save Gas, code that could be skipped should be skipped.

committedRewardTokens duplicate rewards logic and keeps sum of all
actual rewards, so it could be removed.

reservedRewardTokens is not essential as it stores the amount of
available money for paying rewards that is carefully controlled by
rewardRate.

depositedLoyaltyBonus stores non-essential information if least of
the tokens allocated for it are not reused.

Contract: CDEX_rewards.sol

Function: getReward, depositTokens, notifyRewardAmount, updateReward

Recommendation: remove using of the variables that are not essential.

Status: New

www.hacken.io



Recommendations

1. Your contract reserves the maximum possible amount for loyalty
bonuses, but not all of them are spent. In such a way some tokens are
locked on the contract. You may carefully reuse them in the
notifyRewardAmount function.

Contracts: CDEX_rewards.sol

www.hacken.io



Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io


