
Customer: Dexalot
Date: April 13th, 2022

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly
after all vulnerabilities are fixed — upon a decision of the
Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Dexalot.

Approved by Andrew Matiukhin | CTO Hacken OU
Type Exchange; Portfolio; Fee; OrderBooks; TradePairs
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Git repository https://github.com/Dexalot/contracts
Commit 42f91db4989dd31146854170bf64f04f20989b4d
Technical
Documentation

YES

JS tests YES
Website https://dexalot.com/
Timeline 26 AUGUST 2021 – 07 APRIL 2022
Changelog 03 SEPTEMBER 2021 – INITIAL AUDIT

15 SEPTEMBER 2021 – SECOND REVIEW
15 NOVEMBER 2021 – THIRD REVIEW
18 FEBRUARY 2022 – FOURTH REVIEW
22 FEBRUARY 2022 – FIFTH REVIEW
16 MARCH 2022 – SIXTH REVIEW
23 MARCH 2022 – SEVENTH REVIEW
04 APRIL 2022 – EIGHTHS REVIEW
07 APRIL 2022 – NINTH REVIEW
10 APRIL 2022 – TENTH REVIEW

www.hacken.io

https://github.com/Dexalot/contracts
https://dexalot.com/

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 7

Audit overview 8

Conclusion 11

Disclaimers 12

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Dexalot (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contract and
its code review conducted between August 25th, 2021 - September 3rd, 2021.

The second code review was conducted on September 15th, 2021.

The third code review was conducted on November 15th, 2021.

The fourth code review was conducted on February 18th, 2022.

The fifth review was conducted on February 22nd, 2022.

The sixth review was conducted on March 16th, 2022.

The seventh review was conducted on March 23rd, 2022.

The eighths review was conducted on April 4th, 2022.

The ninth review was conducted on April 7th, 2022.

The tenth review was conducted on April 13th, 2022.

Scope

The scope of the project is smart contracts in the repository:
Git repository:

https://github.com/Dexalot/contracts
md5 hash:

42f91db4989dd31146854170bf64f04f20989b4d
Technical Documentation: Yes
JS tests: Yes
Contracts:

interfaces/IPortfolio.sol
interfaces/ITradePairs.sol
library/Bytes32Library.sol
library/Bytes32LinkedListLibrary.sol
library/RBTLibrary.sol
library/StringLibrary.sol
token/Airdrop.sol
token/AirdropV1.sol
token/DexalotToken.sol
token/MockToken.sol
token/Staking.sol
token/TokenVesting.sol
Exchange.sol
OrderBooks.sol
Portfolio.sol
TradePairs.sol

www.hacken.io

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ DoS with (Unexpected) Throw
▪ DoS with Block Gas Limit
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ Costly Loop
▪ ERC20 API violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency
▪ Data Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency manipulation
▪ Kill-Switch Mechanism
▪ Operation Trails & Event Generation

www.hacken.io

Executive Summary

According to the assessment, the Customer's smart contracts are
well-secured.

Our team analyzed code functionality, manual audit, and automated checks
with Mythril and Slither. All issues found during automated analysis were
manually reviewed, and important vulnerabilities are presented in the Audit
overview section. All found issues can be found in the Audit overview
section.

As a result of the audit, security engineers found 5 low severity issues.

After the second review, security engineers found that all issues were
resolved.

After the third review, security engineers found that SafeERC20 and
 IERC20Metadata imports were replaced by their upgradeable versions, and the
Fee contract was removed. No new issues were found.

After the fourth review, security engineers found that the scope was
slightly updated with the token and vesting contracts and the Airdrop.
However, only 1 medium and 1 low severity issues were found.

After the fifth review, security engineers found 1 medium severity issue.

After the sixth review, security engineers found that vesting was added to
an Airdrop contract. 1 medium and 1 low severity issues was identified.

After the seventh review, security engineers found some changes, however,
there is still 1 medium severity issue.

After the eighths review, security engineers found some changes, however,
there is still 1 medium severity issue.

After the ninth review, security engineers found that the portfolio
functionality was completely removed from the Airdrop contract, therefore
no security issues were found.

After the tenth review, security engineers found that the staking contract
was slightly updated, re-stake functionality was added as well as the
emergency withdrawal function now leaves user-staked tokens on the
contract, therefore no security issues were found.

NOTICE:

The Staking contract owner can withdraw all reward tokens at any time but
always leaves the current staked token amount on the contract.

NOTICE 2:

The Airdrop contract owner can withdraw all tokens at any time.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Audit overview

Critical

No critical issues were found.

High

No high severity issues were found.

Medium

1. Test coverage is low

Test coverage is about 63% for statements and only 42% for branches
which is really low.

Scope: Tests

Recommendation: Please make sure tests cover at least 95% of
statements and up to 100% for code branches.

Status: Fixed

2. Possible unexpected behavior

In the case of calling “Airdrop.claim” function with passing
“isFundingPortfolio” as true, it is unclear that a caller should give
the allowance for the “Portfolio” contract to spend their tokens in
the “unreleased” amount, which is unknown until “claim” execution.

This part of logic is not straightforward and looks like a contract
expecting that the sender will approve the “Portfolio” to spend the
“uint256.MAX” amount of tokens.

Contract: Airdrop.sol

Function: claim

Recommendation: We would recommend either adding a new function to
the Portfolio contract allowing to pass the receiver, but
transferring tokens from the sender, or at least checking the
allowance in case of “isFundingPortfolio” at the beginning of the
“claim” function to eliminate excess gas usages and improve the logic
readability.

Status: Fixed

Low

1. No events on setPortfolio function

The function setPortfolio updates a critical contract value.
Therefore, it should emit an event for better tracking off-chain.

Recommendation: Please emit an event when changing the portfolio
value.

Status: Fixed

www.hacken.io

2. No events on setTradePairs function

The function setTradePairs updates a critical contract value.
Therefore, it should emit an event for better tracking off-chain.

Recommendation: Please emit an event when changing the tradePairs
value.

Status: Fixed

3. Implicit state variable visibility

When visibility is not explicitly declared, it is assumed to be
internal. However, it could be unclear to reviewers.

Recommendation: Please add an explicit visibility declaration.

Status: Fixed

4. Reading state variable in the loop

Calling length() method of the EnumerableSetUpgradeable for the state
variable is burning gas.

Recommendation: Please store the result of the length() call to the
local variable and use it in the loop.

Status: Fixed

5. Multiple access for the state variable

Accessing the state variable in the function multiple times burns the
gas.

Recommendation: Please store the value of the state variable in the
local variable.

Status: Fixed

6. Too many digits

Literals with many digits are difficult to read and review

Contract: DexalotToken

Function: constructor

Recommendation: Please consider using scientific notation and ether
unit suffix (i.e. 100e6 ether).

Status: The contract is already deployed.

7. Using time unit suffixes

Solidity provides the time unit suffixes that make it easier to
calculate time units.

Contract: Staking

Constant: SECONDSINYEAR

Recommendation: Try using 365 days instead of 31536000.
www.hacken.io

https://docs.soliditylang.org/en/latest/units-and-global-variables.html#time-units

Status: Fixed

www.hacken.io

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

The audit report contains all found security vulnerabilities and other
issues in the reviewed code.

As a result of the audit, security engineers found 5 low severity issues.

After the second review, security engineers found that all issues were
resolved.

After the third review, security engineers found that SafeERC20 and
 IERC20Metadata imports were replaced by their upgradeable versions, and the
Fee contract was removed. No new issues were found.

After the fourth review, security engineers found that the scope was
slightly updated with the token and vesting contracts and the Airdrop.
However, only 1 medium and 1 low severity issues were found.

After the fifth review, security engineers found 1 medium severity issue.

After the sixth review, security engineers found that vesting was added to
an Airdrop contract. 1 medium and 1 low severity issues was identified.

After the seventh review, security engineers found some changes, however,
there is still 1 medium severity issue.

After the eighths review, security engineers found some changes, however,
there is still 1 medium severity issue.

After the ninth review, security engineers found that the portfolio
functionality was completely removed from the Airdrop contract, therefore
no security issues were found.

After the tenth review, security engineers found that the staking contract
was slightly updated, re-stake functionality was added as well as the
emergency withdrawal function now leaves user-staked tokens on the
contract, therefore no security issues were found.

NOTICE:

The Staking contract owner can withdraw all reward tokens at any time but
always leaves the current staked token amount on the contract.

NOTICE 2:

The Airdrop contract owner can withdraw all tokens at any time.

www.hacken.io

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

