
Customer: FIDOMETA
Date: May 17th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
FIDOMETA.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type of Contracts ERC20 token

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://fidometa.io

Timeline 25.03.2022 – 17.05.2022

Changelog
12.04.2022 – Initial Review
21.04.2022 – Revision
17.05.2022 – Revision

www.hacken.io

https://fidometa.io

Table of contents
Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Findings 8

Recommendations 20

Disclaimers 21

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by FIDOMETA (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:
Repository: https://github.com/fidometa/Smart_Contract
Commit:

ad56b0ce678f77d162752dbb5d987d2f4a29fddf
66f43e8644a20ed2ebbc4db94d6b2dcc797ac1c7 (revision)
7bb7d6d237f8a6ff97470a8969f42a9bb78a6db5 (revision)

Technical Documentation: Yes
(https://github.com/fidometa/Smart_Contract/blob/main/FidometaDocument.pdf)
JS tests: Yes
Contract: FidoMeta.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ EIP standards violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency
▪ Kill-Switch Mechanism

www.hacken.io

https://github.com/fidometa/Smart_Contract
https://github.com/fidometa/Smart_Contract/blob/main/FidometaDocument.pdf

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided functional but no technical requirements. The total
Documentation Quality score is 5 out of 10.

Code quality
The total CodeQuality score is 5 out of 10. Code duplications. Superficial
unit tests were provided.

Architecture quality
The architecture quality score is 8 out of 10. Functions are overwhelmed
with template code that could be moved to separate functions and be reused.

Security score
As a result of the audit, security engineers found 2 high, 2 medium, and 9
low severity issues. The security score is 0 out of 10. All found issues
are displayed in the “Issues overview” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 1.8

Notices

1. The owner can exclude users from getting or paying any rewards.
2. The owner can change the max transfer amount and, in such a way,
prevent transferring for everyone except him.

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution

www.hacken.io

Findings

Critical

1. Missing functionality

The functions emit Transfer event but do not change any balances.
This could lead to possible double-spending or reduction of users’
rewards.

Contract: FidoMeta.sol

Functions: _burn, _mint, constructor

Recommendation: review and fix the logic.

Status: Fixed (Revised Commit: 66f43e8)

2. Excluding from receiving rewards logic is corrupted

After excluding the user from rewards (excludeFromReward), the user
should not get part of the community charge (and the user sees it
so). However, his reflection balance updates along with his prime
balance, and on including this user back (includeInReward), his
balance is updated according to reflection tokens (_rOwned), and all
hidden community rewards will be received.

Contract: FidoMeta.sol

Recommendation: review and fix the logic.

Status: Fixed (Revised Commit: 66f43e8)

3. Operation between different time units

block.timestamp may be bigger than startTime plus initialLock in
seconds, but initialLock is given in days. This could lead to
unexpected unlocking of funds or reverting the transaction according
to internal reasons.

Contract: FidoMeta.sol

Functions: unlock

Recommendation: multiply initialLock by 1 days.

Status: Fixed (Revised Commit: 66f43e8)

4. Significant impact on market price

The functions change the balances of all users at one moment. This
could be used for changing market price significantly, predicting
exchange rates, and as a result, looting untrained users.

This may lead to total user discontent.

Contract: FidoMeta.sol

Functions: burn, mint

www.hacken.io

Recommendation: minting and burning functionality should change the
balance of one user, provide this functionality or remove the
functions.

Status: Fixed (Revised Commit: 7bb7d6d)

High

1. A new vesting period may not be created

locks mapping is not cleared on finishing of the vesting period, so
the owner will not be able to set new vesting for the same user.

Contract: FidoMeta.sol

Functions: transferWithLock, unlock

Recommendation: delete locks’ item on the last unlocking.

Status: Fixed (Revised Commit: 66f43e8)

2. No checks to prevent percentage overflow

Fees may become more than 100%. Every fee could be up to 100%, and
their sum is 500%.

This could lead to reverting of all transactions.

Contract: FidoMeta.sol

Function: setCommunityCharge, setEcoSysFee, setSurcharge1,
setSurcharge2, setSurcharge3

Recommendation: implement checks to prevent the scenario, validate
that sum of all fees does not exceed 100%.

Status: Fixed (Revised Commit: 7bb7d6d)

3. User balance may exceed the total supply

If the owner excludes himself from rewards and then burns all tokens,
the total supply will be lower than the sum of user balances.

This may lead to wrong rates calculation and unexpected behavior of
taking charges logic.

Contract: FidoMeta.sol

Functions: burn

Recommendation: check this case and fix the corresponding logic.

Status: Fixed (Revised Commit: 7bb7d6d)

4. Integer Underflow

If a user unlocks vesting firstly in the first four months and then
in the sixth month or later, the transaction will be reverted due to
underflow.

This may lead to total unavailability to unlock vestings.

www.hacken.io

Contract: FidoMeta.sol

Functions: unlock

Recommendation: rewrite the code avoiding recalculations, and
structure actions sequentially, processing this case.

Status: Fixed (Revised Commit: 7bb7d6d)

5. Missing management of excluded accounts

According to the current algorithm, all excluded accounts should be
added to _excluded array and _isExcludedFromReward mapping, but in
the function adding to _excluded is missed.

This could lead to wrong rates calculation, unexpected contract
behavior, and possible double spending.

Contract: FidoMeta.sol

Function: setServiceWallet

Recommendation: carefully manage all excluded accounts.

Status: New

6. A new vesting period may not be created

locks mapping may not be cleared on finishing of the vesting period
because of rounding division to the floor, so the owner will not be
able to set new vesting for the same user. Example:

● transaction_1: admin do transferWithLock 4 tokens
● transaction_2 (on 4th vesting month): user does unlock
● transaction_3 (on 5th vesting month): user does unlock
● transaction_4: admin tries transferWithLock any amount
● result: transaction_4 will fail

This could lead to no possibility of creating new vesting for the
user.

Contract: FidoMeta.sol

Functions: transferWithLock, unlock

Recommendation: delete locks’ item on the last unlocking, check the
case.

Status: New

Medium

1. Old wallets are not included back to changes and rewards

These functions set new wallets and exclude them from charging but do
not include back the old ones.

Contract: FidoMeta.sol

www.hacken.io

Functions: setEcoSysWallet, setSurcharge_1_Wallet,
setSurcharge_2_Wallet, setSurcharge_3_Wallet

Recommendation: use excluding from charges and rewards only for
service accounts.

Status: Fixed (Revised Commit: 66f43e8)

2. Possible Gas exceeding

The contract can exceed the gas limit in long cycles.

Contract: FidoMeta.sol

Functions: includeInReward

Recommendation: update logic to prevent situations when
_excludedFromReward is too long.

Status: Fixed (Revised Commit: 66f43e8)

3. SafeMath is unneeded after 0.8.0

To save Gas and make code transparent, it is better not to use the
SafeMath library. Solidity >= 0.8.0 version has built-in math checks.

Contract: FidoMeta.sol

Recommendation: get rid of using SafeMath.

Status: Fixed (Revised Commit: 7bb7d6d)

4. Initial minting event skipped

In the constructor, if all tokens are assigned to the owner, the
Transfer event should be emitted.

Contract: FidoMeta.sol

Recommendation: emit the event.

Status: Fixed (Revised Commit: 7bb7d6d)

5. Burn wallet could be changed

The burn wallet (surcharge1) should never be changed. As
documentation provides info that this wallet is only for unused fees,
the owner should not have the ability to change it and claim the next
fees that should be burned. Moreover, to save Gas, it is better to
burn assets by decreasing user balance and changing the supply of
tokens.

Contract: FidoMeta.sol

Recommendation: implement burning as decreasing of _rTotal and
_tTotal or mention in documentation that this charge may change its
purpose in future.

Status: Fixed (Revised Commit: 7bb7d6d)

6. Vested assets should be unlocked automatically
www.hacken.io

The function should calculate the actual withdrawable amount for the
user. To improve user experience, it is better to implement automatic
unlock of the corresponding vesting if assets are ready for
unlocking.

Contract: FidoMeta.sol

Function: _transfer

Recommendation: check if the users may unlock tokens and unlock them.

Status: Mitigated (with customer notice)

7. Possible Gas exceeding

The contract can exceed the gas limit in long cycles.

As accounts could be only excluded, it is better to update the logic
of rates calculation and separate excluded accounts from r-space. In
such a way, a significant amount of Gas could be saved at
recalculation of total supply and actual rates.

Contract: FidoMeta.sol

Function: _getCurrentSupply

Recommendation: update logic to prevent situations when _excluded
array is too long, keep actual information about supply for not
recalculating it each time.

Status: Acknowledged

8. Violation of ERC-20 standard

transferFrom should be possible if the amount is allowed by the owner
of the assets. If a user tries to transfer all the allowance size, it
fails.

Contract: FidoMeta.sol

Function: transferFrom

Recommendation: fix this case.

Status: New

Low

1. Unused library

Using the Address library is not needed.

Contract: FidoMeta.sol

Recommendation: remove the library.

Status: Fixed (Revised Commit: 66f43e8)

2. Modification of well-known contract

www.hacken.io

Imported or copy-pasted contracts (like SafeMath, Context, Ownable,
etc.) should not be modified to keep the code clear. Ownable contract
was modified with a freezing feature and several unused variables.

Contract: FidoMeta.sol

Recommendation: move this feature to the FidoMeta contract body.

Status: Fixed (Revised Commit: 66f43e8)

3. Floating pragma

The contracts use floating pragma ^0.8.11.

Contract: FidoMeta.sol

Recommendation: consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (Revised Commit: 66f43e8)

4. Violation of IERC-20 standard

According to the IERC-20 standard, the functions should be external
to save Gas.

Contract: FidoMeta.sol

Function: transfer, allowance, approve, transferFrom

Recommendation: these functions should be declared as external.

Status: Fixed (Revised Commit: 66f43e8)

5. Unused functions

Unused code overloads the code and takes additional Gas for
deploying. It is better to use the public keyword in the struct
definition for automatic generation of view methods.

Contract: FidoMeta.sol

Functions: isExcludedFromCommunityCharge, isExcludedFromEcoSysFee,
isExcludedFromSurcharge1, isExcludedFromSurcharge2,
isExcludedFromSurcharge3, viewSurcharge_1_Wallet,
viewSurcharge_2_Wallet, viewSurcharge_3_Wallet, viewEcoSysWallet,
isExcludedFromReward, totalCommunityCharge, name, symbol, decimals

Recommendation: remove these functions and declare corresponding
structs as public.

Status: Fixed (Revised Commit: 66f43e8)

6. Unused functions

Unused code overloads the code and takes additional Gas for
deploying.

Contract: FidoMeta.sol

Function: reflectionFromToken
www.hacken.io

Recommendation: remove this function.

Status: Fixed (Revised Commit: 66f43e8)

7. Similar functions

Functions that do mostly the same things may be united.

Contract: FidoMeta.sol

Function: setCommunityCharge, setEcoSysFee, setSurcharge1,
setSurcharge2, setSurcharge3

Recommendation: unite these functions into one that sets all charges.

Status: Fixed (Revised Commit: 66f43e8)

8. Similar functions

Functions that do mostly the same things may be united.

Contract: FidoMeta.sol

Function: excludeFromCommunityCharge, includeInCommunityCharge,
excludedFromEcoSysFee, includeInEcoSysFee, excludedFromSurcharge1,
includeInSurcharge1, excludedFromSurcharge2, includeInSurcharge2,
excludedFromSurcharge3, includeInSurcharge3

Recommendation: unite these functions in one that sets all
includes/excludes.

Status: Fixed (Revised Commit: 66f43e8)

9. Template code

It is better to create a modifier to exclude the account from all
charges.

Contract: FidoMeta.sol

Function: setEcoSysWallet, setSurcharge_1_Wallet,
setSurcharge_2_Wallet, setSurcharge_3_Wallet

Recommendation: rid of template code.

Status: Fixed (Revised Commit: 66f43e8)

10. Template code

The functions do not compose calculations and are used only in one
place, so code separation is useless.

Contract: FidoMeta.sol

Function: calculateCommunityCharge, calculateSurcharge1,
calculateSurcharge2

Recommendation: the functions could be deleted or replaced with a
function that receives the fee and amount and returns the calculated
value.

www.hacken.io

Status: Fixed (Revised Commit: 66f43e8)

11. Template code

It is better to create a modifier to disable necessary changes.

Contract: FidoMeta.sol

Function: removeEcosysFee, removeSurcharge1, removeSurcharge2,
removeSurcharge3, removeCommunityCharge, restoreCommunityCharge,
restoreEcosysFee, restoreSurcharge1, restoreSurcharge2,
restoreSurcharge3

Recommendation: remove these functions and implement a modifier that
unites all the logic.

Status: Fixed (Revised Commit: 66f43e8)

12. Similar functions

Functions that do mostly the same things may be united.

Contract: FidoMeta.sol

Function: _takeEcoSysCharge, _takeSurcharge1, _takeSurcharge2,
_takeSurcharge3

Recommendation: unite these functions into one that takes all
charges.

Status: Fixed (Revised Commit: 66f43e8)

13. Functions that can be declared as external

To save Gas, public functions that are never called in the contract
should be declared as external.

Contract: FidoMeta.sol

Function: setCommunityCharge, setEcoSysFee, setSurcharge1,
setSurcharge2, setSurcharge3, setEcoSysWallet, setSurcharge_1_Wallet,
setSurcharge_2_Wallet, setSurcharge_3_Wallet, burn, mint, name,
symbol, decimals, increaseAllowance, decreaseAllowance,
excludeFromReward, excludeFromCommunityCharge,
includeInCommunityCharge, excludedFromEcoSysFee, includeInEcoSysFee,

Recommendation: aforementioned should be declared as external.

Status: Fixed (Revised Commit: 66f43e8)

14. Requires that would never revert transaction

uint256 will always be >= 0, the requires are useless

Contract: FidoMeta.sol

Functions: transferWithLock

Recommendation: review what the requirements should prevent and fix
them.

www.hacken.io

Status: Fixed (Revised Commit: 7bb7d6d)

15. Modification of well-known contract

Imported or copy-pasted contracts (like SafeMath, Context, Ownable,
etc.) should not be modified to keep the code clear. Ownable contract
is modified with a _lockTime variable that is never used.

Contract: FidoMeta.sol

Recommendation: remove unused variable.

Status: Fixed (Revised Commit: 7bb7d6d)

16. Local variable shadowing

Local variable shadowing may lead to unexpected code behavior in
future development.

Contract: FidoMeta.sol

Functions: _approve:(owner)

Contract: BreederDaoTokenLockWallet.sol

Recommendation: rename the local variables that shadow other
components.

Status: Fixed (Revised Commit: 7bb7d6d)

17. State variables that could be declared constant

To save Gas, constant state variables should be declared constant.

Contract: FidoMeta.sol

Recommendation: add the constant attribute to state variables that
never change.

Status: Fixed (Revised Commit: 7bb7d6d)

18. Functions that can be declared as external

To save Gas, public functions that are never called in the contract
should be declared as external.

Contract: FidoMeta.sol

Function: excludeFromReward

Recommendation: use the external attribute for functions never called
from the contract.

Status: Fixed (Revised Commit: 7bb7d6d)

19. Template variables

The code should not be overwhelmed with copy-pasted variables,
functions, and other structures. Variables that mean mostly the same
and are used in the same places may be united into a structure.

www.hacken.io

Contract: FidoMeta.sol

Variables: _community_charge, _ecoSysFee, _surcharge1, _surcharge2,
_surcharge3

Variables: _previousCommunityCharge, _previousEcoSysFee,
_previousSurcharge1, _previousSurcharge2, _previousSurcharge3

Variables: _ecoSysWallet, _surcharge_1_Wallet, _surcharge_2_Wallet,
_surcharge_3_Wallet

Variables: takeCommunityCharge, takeEcosysFee, takeSurcharge1,
takeSurcharge2, takeSurcharge3

Recommendation: unite the variables into structures.

Status: Acknowledged

20. Template code

To save Gas costly reassignment operations should not be used.
Changing and reverting values for special calls is not a good way to
solve this problem. It is better to process special arguments to the
final destination where the changes are needed.

Contract: FidoMeta.sol

Function: _tokenTransfer

Recommendation: get rid of template code and previous value
variables, structure actions sequentially, and process all options on
the corresponding level of abstractions.

Status: Acknowledged

21. Overwhelmed code

Unneeded reassignment is provided. take variables could be defined
already with actual values. Moreover, as they are unused there
directly, it is better to use them in _getTValues function where
their sense is needed.

Contract: FidoMeta.sol

Function: _transfer

Recommendation: update the code and use values exactly where they are
needed.

Status: Acknowledged

22. Repeated code

The functions include the same operation (updating r-space balance of
the sender) that could be moved to _doTransfer function.

Contract: FidoMeta.sol

Functions: _transferFromExcluded, _transferToExcluded,
_transferStandard, _transferBothExcluded

www.hacken.io

Recommendation: move the operation to _doTransfer function.

Status: New

23. Unnecessary code

Any unnecessary code should be removed in order to save Gas. There
could be only 4 types of transfer, so the else case is not needed.

Contract: FidoMeta.sol

Function: _tokenTransfer

Recommendation: remove unnecessary code.

Status: New

24. Functions that can be declared as external

To save Gas, public functions that are never called in the contract
should be declared as external.

Contract: FidoMeta.sol

Function: totalSupply

Recommendation: aforementioned should be declared as external.

Status: New

25. Unnecessary checks

Any unnecessary code should be removed in order to save Gas. Checks
for each fee separately are not needed because the check for the sum
is stronger.

Contract: FidoMeta.sol

Function: setCharges

Recommendation: remove unnecessary code.

Status: New

26. Modification of well-known contract

Imported or copy-pasted contracts (like SafeMath, Context, Ownable,
etc.) should not be modified to keep the code clear. Ownable contract
was modified with a _previousOwner unused variable.

Contract: FidoMeta.sol

Recommendation: import the contract from public repositories or copy
it from a trusted source and do not modify it anymore.

Status: New

27. Hardcoded values

www.hacken.io

Hardcoded values make development harder and the code less readable.
decimals value should be defined in one place, and the constant
should be used to introduce it.

Contract: FidoMeta.sol

Function: _getTValues

Variables: _ecoSysFee, _surcharge1

Recommendation: use decimals +(-) value to introduce needed value
dependent on decimals value.

Status: New

www.hacken.io

Recommendations

1. Rename variables or write explaining comments to make it easy to
understand what they are responsible for.

Contracts: FidoMeta.sol

2. Provide technical documentation that answers how to build the
project, run tests for it, etc.

Contracts: FidoMeta.sol

3. Provide conscious abstraction levels and restructure the code
sequentially, disposing of actions and checks.

Contracts: FidoMeta.sol

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

