
Customer: Gains Associates
Date: April 18th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Gains Associates.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type of Contracts ERC20 token whitelist pool; Lock wallet;

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://www.gains-associates.com/#/home

Timeline 16.03.2022 – 18.04.2021

Changelog 22.03.2022 – Initial Review
18.04.2022 – Revising

www.hacken.io

https://www.gains-associates.com/#/home

Table of contents
Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Findings 8

Recommendations 11

Disclaimers 12

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Gains Associates (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/lotfiZouad/gains-s
Commit:

73de1056315504d07192b9aaae0555dcdee0c3db
Technical Documentation: No
JS tests: Yes
Contracts:

./contracts/ClaimToken.sol

./contracts/ClaimTokenFactory.sol

./contracts/GainsLockWallet.sol

./contracts/GainsLockWalletFactory.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ EIP standards violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency
▪ Kill-Switch Mechanism

www.hacken.io

https://github.com/lotfiZouad/gains-s

Executive Summary

The score measurements details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided no technical requirements. The total Documentation
Quality score is 0 out of 10.

Code quality
The total Code Quality score is 7 out of 10. The code follows official
language style guides and has low unit tests coverage.

Architecture quality
The architecture quality score is 10 out of 10. The project has clean and
clear architecture and follows the best practices.

Security score
As a result of the audit, the code contains 2 medium and 1 low severity
issue. The security score is 10 out of 10.

Summary
According to the assessment, the Customer's smart contract has the
following score: 8.7

Notices

1. The ClaimToken.sol contract owner may arbitrarily update the token
distribution list.
2. Some contracts are upgradable. Our report covers only those versions
of contracts in the Scope section.

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Graph 1. The distribution of vulnerabilities after the second audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

1. Double spending.

The function `updateAddress` is available for calling by the owner.
It updates the state of the `tokenClaimed` mapping. The mapping
stores the amount of claimed tokens by address. The function
`updateAddress` removes the previous beneficiary address from the
mapping and assigns the claimed amount to the new address. Tokens are
not redistributed, only the mapping state is updated. Then the
previous address may call the `claim` function and get the
whitelisted tokens again. It may happen only if the `merkleRoot` hash
was not updated properly before calling `updateAddress`.

This can lead to double spending if the contract owner calls
`updateAddress` before the proper `merkleRoot` state update.

Contracts: ClaimToken.sol

Function: updateAddress, claim

Recommendation: Remove `updateAddress` function or add the
`merkleRoot` state check to the `updateAddres` to verify that the old
beneficiary address may not claim the same amount of tokens from the
whitelist anymore.

Status: Fixed

2. Inability to get whitelisted funds.

After calling the `updateAddress` function, a new beneficiary address
is added to the `tokenClaimed` mapping, but if this address is added
to the `tokenClaimed` mapping, it may not get all the whitelisted
funds according to the logic of the `claim` function, also
`updateAddress` function does not update `claimedAddresses` mapping
state.

The address added to the `tokenClaimed` mapping by the
`updateAddress` function may not get all the whitelisted funds from
the tokens pool.

Contracts: ClaimToken.sol

Function: updateAddress, claim

Recommendation: Remove `updateAddress` function or rework `claim`
function logic to check if the address exists in `claimedAddresses`
mapping.

Status: Fixed

www.hacken.io

Medium

1. Inability to withdraw non-locked tokens.

The GainsLockWallet.sol contract has a function that allows
withdrawal of any token from the contract when the release time is
up, but the expected behavior is to store the one kind of token. A
user may accidentally send a wrong token to the lock wallet, and
there is no opportunity to withdraw it before the lock period ends.

Contracts: GainsLockWallet.sol

Function: withdrawGains

Recommendation: Allow the beneficiary to withdraw any type of tokens
except the token, which should be locked.

Status: Fixed

2. Unexpected msg.sender.

The GainsLockWallet.sol contract has the `onlyOwner` modifier, which
allows calling functions only if the `msg.sender` is `beneficiary`.
Calling the lock wallet functions from the GainsLockWalletFactory.sol
contract may not be possible because the factory contract will be the
`msg.sender`, but the factory address is not a `beneficiary` address.

It may not be possible to call lock wallet functions from the factory
contract.

Contracts: GainsLockWalletFactory.sol, GainsLockWallet.sol

Function: withdrawGains, relockGains, relockGainsBySubscription,
withdrawGains

Recommendation: Rework logic to allow calling throw the factory
contract or remove part of some logic including such functions as
`relockGainsBySubscription`, `withdrawGains`.

Status: Fixed

3. Checks-Effects-Interactions pattern violation.

The untrusted token may have arbitrary implementation. The reentrancy
attack is possible during the external call to an untrusted token
contract implementation.

Any state variable modifications that happen after an external call
is executed can lead to unexpected behaviors in the function
execution.

Contracts: ClaimToken.sol

Function: claim

Recommendation: Interact only with trusted contracts, check external
calls for reentrancy, follow check effect interaction pattern.

Status: New
www.hacken.io

4. The signed amount of tokens has no deadline.

If a specific amount of tokens is assigned to a user, it may be
claimed at any time. The Merkle tree may be updated by the contract
admin anytime. If the Merkle tree is updated and the new state does
not have some of the previous leaves with an encoded amount of tokens
the inability to claim tokens may be unexpected to the user.

The lack of the deadline field obliges the admin to track the
assigned amount for the whole time and not to remove the leaf from
the Merkle tree after the updates.

Contracts: ClaimToken.sol

Function: claim

Recommendation: It is recommended to include the deadline timestamp
to the Merkle tree leaf structure. This gives a flexible way to
manage the deadlines of the token assignments.

Status: New

Low

1. Zero value token transaction.

The contract adds the amount of claimed tokens to the `tokenClaimed`
mapping. If the user calls the `claim` function twice the execution
goes to the conditional block where the claimed amount is subtracted
from the requested amount `_amount - tokenClaimed[msg.sender]`, if
the user claims tokens for the second time the result will be equal
to 0. This value will be passed to the `safeTransfer` call and zero
tokens will be transferred to the user.

Zero value transactions will happen without any errors if the user
requests the claimed amount twice or more.

Contracts: ClaimToken.sol

Function: claim

Recommendation: It is recommended to rework the condition block, and
add a `required` statement to check if the amount to send is more
than 0.

Status: New

www.hacken.io

Recommendations

1. There is no need to use the SafeMath library for Solidity version
greater than 0.8. Since Solidity 0.8, the overflow/underflow check is
implemented on the language level.

Contracts: ClaimToken.sol, GainsLockWallet.sol

2. It is recommended to update the `claim` function logic by adding a
nonce value inside the Merkle tree leaf, this will give an
opportunity to simplify the condition statements inside the `claim`
function when a user has few signed leaves.

Contracts: ClaimToken.sol

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

