
Customer: RichQuack
Date: April 26th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
RichQuack.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type Staking

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://www.richquack.com/

Timeline 20.04.2022 – 26.04.2022

Changelog 26.04.2022 – Initial Review

www.hacken.io

https://www.richquack.com/

Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 10

Findings 11

Disclaimers 13

www.hacken.io

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by RichQuack (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/Richquack/Launchpad/tree/develop
Commit:

502bf137100af1c2417828a0e6a04f641aedaeae
Deployed Contract Address:

https://bscscan.com/address/0x24E1FB7a781d255EdC40e80C89d9289dC61925F
2#code
Technical Documentation: Yes
(https://docs.google.com/document/d/17_0R2ofAMVmUupnG3w2MgK-vq4GJAL_QpAT4C3
HdUqI/edit?usp=sharing)
JS tests: Yes
Contracts:

Staking.sol
SHA3: b8ef7bfc3f900c9ff6d4840fc5101d5a8ba2d1c049fb163ea663cf8394c60d67

IStaking.sol
SHA3: 68db8e0ad697769cde9a4bb50a9ada78fe6f94e90fb812911f19d6faffe3eec4

www.hacken.io

https://github.com/Richquack/Launchpad/tree/develop
https://bscscan.com/address/0x24E1FB7a781d255EdC40e80C89d9289dC61925F2#code
https://bscscan.com/address/0x24E1FB7a781d255EdC40e80C89d9289dC61925F2#code
https://docs.google.com/document/d/17_0R2ofAMVmUupnG3w2MgK-vq4GJAL_QpAT4C3HdUqI/edit?usp=sharing
https://docs.google.com/document/d/17_0R2ofAMVmUupnG3w2MgK-vq4GJAL_QpAT4C3HdUqI/edit?usp=sharing

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Executive Summary

The score measurements details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided functional requirements and technical requirements.
However, they have inconsistent information. The total Documentation
Quality score is 8 out of 10.

Code quality
The total CodeQuality score is 10 out of 10. Code follows official language
style guides. Unit tests were provided.

Architecture quality
The architecture quality score is 10 out of 10. The architecture is clear.

Security score
As a result of the audit, security engineers found 4 low severity issues.
The security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101 If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102 It is recommended to use a recent
version of the Solidity compiler.

Passed

Floating
Pragma

SWC-103 Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Failed

Unchecked Call
Return Value

SWC-104 The return value of a message call
should be checked.

Passed

Access Control
&
Authorization

CWE-284 Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

SWC-106 The contract should not be destroyed
until it has funds belonging to users.

Not Relevant

Check-Effect-I
interaction

SWC-107 Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Uninitialized
Storage
Pointer

SWC-109 Storage type should be set explicitly if
the compiler version is < 0.5.0.

Not Relevant

Assert
Violation

SWC-110 Properly functioning code should never
reach a failing assert statement.

Not Relevant

Deprecated
Solidity
Functions

SWC-111 Deprecated built-in functions should
never be used.

Passed

Delegatecall
to Untrusted
Callee

SWC-112 Delegatecalls should only be allowed to
trusted addresses.

Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

www.hacken.io

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128

Race
Conditions

SWC-114 Race Conditions and Transactions Order
Dependency should not be possible.

Passed

Authorization
through
tx.origin

SWC-115 tx.origin should not be used for
authorization.

Passed

Block values
as a proxy for
time

SWC-116 Block numbers should not be used for
time calculations.

Failed

Signature
Unique Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id.

Not Relevant

Shadowing
State Variable

SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness

SWC-120 Random values should never be generated
from Chain Attributes.

Not Relevant

Incorrect
Inheritance
Order

SWC-125 When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2
SWC-126

All external calls should be performed
only to trusted addresses.

Passed

Presence of
unused
variables

SWC-131 The code should not contain unused
variables if this is not justified by
design.

Failed

EIP standards
violation

EIP EIP standards should not be violated. Not Relevant

Assets
integrity

Custom Funds are protected and cannot be
withdrawn without proper permissions.

Passed

User Balances
manipulation

Custom Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency

Custom Smart contract data should be consistent
all over the data flow.

Passed

Flashloan
Attack

Custom When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation

Custom Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

www.hacken.io

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops

Custom Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block gas limit.

Passed

Style guide
violation

Custom Style guides and best practices should
be followed.

Passed

Requirements
Compliance

Custom The code should be compliant with
requirements provided by the Customer,

Passed

Repository
Consistency

Custom The repository should contain a
configured development environment with
a comprehensive description of how to
compile, build and deploy the code.

Passed

Tests Coverage Custom The code should be covered with unit
tests. Tests coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

www.hacken.io

System Overview

Staking is an ERC-20 staking project with the following contracts:
● Staking — a contract that rewards users for staking their tokens. APY

depends on the lock period (7 days - 0% APY, 14 days - 8% APY, 30
days - 13% APY, 28 days - 0% APY). The staking has 9 levels depending
on the amount of tokens staked. Each lock period has allowed staking
levels. Staking allows re-stakings (adding 5 more days to each of 7,
14, 30 days stakings) that users can add with the “PRESALE” role. ¾
of stalking can be withdrawn if the lock period has not finished.
Special Notice: if the contract does not have enough rewards balance
to send during deposit upgrade, execution will fail.

● IStaking — an interface that defines some staking functions.

Privileged roles
● The user with the “DEFAULT_ADMIN_ROLE” role of the staking contract

can start and finish the staking pool, withdraw collected fees, grant
the “FABRIC” and the “PRESALE” roles to addresses.

● Users with the “FABRIC” role can grant the “PRESALE” roles to
addresses.

● Users with the “PRESALE” role can add re-lock (add 5 days to each of
7, 14, 30 days stakings of the user) anytime.

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

1. Incorrect level eligibility.

According to the functional requirements, level eligibility for 7 and
14 days locks is 1-7 levels for both, but in the technical
requirements and code they are 1-3 levels for the 7 days lock and 1-6
for the 14 days lock.

Stacking rules must match those described in the documentation so
that users have the correct information.

Contracts:Staking.sol

Function: deposit

Recommendation: change the code to meet the functional requirements
or modify the documentation.

Status: Fixed

Low

1. Unused variable.

Field “relockOw” is never used.

Contracts: Staking.sol

Function: -

Recommendation: remove unused variable.

Status: New

2. Unlocked pragma

Contracts with unlocked pragmas may be deployed by the latest
compiler, which may have higher risks of undiscovered bugs.

Contracts: Staking.sol, IStaking.sol

Function: -

Recommendation: lock pragmas to a specific compiler version.

Status: New

3. Using block numbers for time calculations

www.hacken.io

The contract uses block.timestamp for time calculations. It is not
precise and safe.

Contracts: Staking.sol

Functions: startPool, endPool, deposit, _calcFee, _timestamp

Recommendation: it is recommended to avoid using block.timestamp.
Alternatively, it is safe to use oracles.

Status: New

4. No events on state variables changings.

It is recommended to emit events on important state changes.

Contracts: Staking.sol

Functions: startPool, endPool, deposit, emergencyWithdraw, withdraw,
_updateLevel

Recommendation: emit events on important state changes.

Status: New

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

