
Customer: TrustSwap
Date: April 28th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
TrustSwap.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type Staking contract

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://trustswap.com/

Timeline 14.04.2022 – 28.04.2022

Changelog 19.04.2022 – Initial Review
28.04.2022 – Second Review

www.hacken.io

https://trustswap.com/

Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 10

Findings 11

Disclaimers 14

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by TrustSwap (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/trustswap/locked-staking-contracts/tree/no-auto-comp
Commit:

3da39e219617d87ea8550cd8d152c836aa66e0be
Technical Documentation: Yes
(https://drive.google.com/file/d/1QDDsxA55K3mQ2NsOlMlyTpuyTW1gj0sm/view)
JS tests: Yes
(https://github.com/trustswap/locked-staking-contracts/tree/no-auto-comp/sr
c/test)
Contracts:

File: ./src/contracts/LockedStaking.sol
SHA3: 04a7ddefd5af7b8846919556fe05a29248fae1b45125deab7ccb332414bbd1b5

Second review scope
Repository:

https://github.com/trustswap/locked-staking-contracts/tree/master
Commit:

cbfc31196d79f5dbff5a4fd70e66275c41671ab4
Technical Documentation: Yes
(https://drive.google.com/file/d/1QDDsxA55K3mQ2NsOlMlyTpuyTW1gj0sm/view)
JS tests: Yes
(https://github.com/trustswap/locked-staking-contracts/tree/no-auto-comp/sr
c/test)
Contracts:

File: ./src/contracts/LockedStaking.sol
SHA3: cf685b6d9c0337e31c4c37eef9cbb8bab87ddb6c92004b278ca2d0d659402ea2

www.hacken.io

https://github.com/trustswap/locked-staking-contracts/tree/no-auto-comp
https://drive.google.com/file/d/1QDDsxA55K3mQ2NsOlMlyTpuyTW1gj0sm/view
https://github.com/trustswap/locked-staking-contracts/tree/no-auto-comp/src/test
https://github.com/trustswap/locked-staking-contracts/tree/no-auto-comp/src/test
https://github.com/trustswap/locked-staking-contracts/tree/no-auto-comp
https://drive.google.com/file/d/1QDDsxA55K3mQ2NsOlMlyTpuyTW1gj0sm/view
https://github.com/trustswap/locked-staking-contracts/tree/no-auto-comp/src/test
https://github.com/trustswap/locked-staking-contracts/tree/no-auto-comp/src/test

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Executive Summary

The Score measurements details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided superficial functional requirements and technical
requirements. The total Documentation Quality score is 10 out of 10.

Code quality
The total Code Quality score is 10 out of 10. The code follows official
language style guides. Unit tests were provided.

Architecture quality
The architecture quality score is 10 out of 10. The project has clear and
clean architecture.

Security score
As a result of the audit, security engineers found 2 high, 2 medium, and 4
low severity issues. The security score is 0 out of 10.

As a result of the second review, security engineers found no new issues. 2
high, 2 medium and 3 low issues from the previous revision were fixed. As a
result, the code contains 1 low issue. The security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101 If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102 It is recommended to use a recent
version of the Solidity compiler.

Passed

Floating
Pragma

SWC-103 Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value

SWC-104 The return value of a message call
should be checked.

Not Relevant

Access Control
&
Authorization

CWE-284 Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

SWC-106 The contract should not be destroyed
until it has funds belonging to users.

Not Relevant

Reentrancy SWC-107 Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Uninitialized
Storage
Pointer

SWC-109 Storage type should be set explicitly if
the compiler version is < 0.5.0.

Not Relevant

Assert
Violation

SWC-110 Properly functioning code should never
reach a failing assert statement.

Not Relevant

Deprecated
Solidity
Functions

SWC-111 Deprecated built-in functions should
never be used.

Passed

Delegatecall
to Untrusted
Callee

SWC-112 Delegatecalls should only be allowed to
trusted addresses.

Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

www.hacken.io

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128

Race
Conditions

SWC-114 Race Conditions and Transactions Order
Dependency should not be possible.

Passed

Authorization
through
tx.origin

SWC-115 tx.origin should not be used for
authorization.

Passed

Block values
as a proxy for
time

SWC-116 Block numbers should not be used for
time calculations.

Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id.

Not Relevant

Shadowing
State Variable

SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness

SWC-120 Random values should never be generated
from Chain Attributes.

Not Relevant

Incorrect
Inheritance
Order

SWC-125 When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Not Relevant

Calls Only to
Trusted
Addresses

EEA-Lev
el-2
SWC-126

All external calls should be performed
only to trusted addresses.

Passed

Presence of
unused
variables

SWC-131 The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation

EIP EIP standards should not be violated. Passed

Assets
integrity

Custom Funds are protected and cannot be
withdrawn without proper permissions.

Passed

User Balances
manipulation

Custom Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency

Custom Smart contract data should be consistent
all over the data flow.

Passed

Flashloan
Attack

Custom When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation

Custom Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

www.hacken.io

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops

Custom Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block gas limit.

Passed

Style guide
violation

Custom Style guides and best practices should
be followed.

Passed

Requirements
Compliance

Custom The code should be compliant with
requirements provided by the Customer,

Passed

Repository
Consistency

Custom The repository should contain a
configured development environment with
a comprehensive description of how to
compile, build and deploy the code.

Passed

Tests Coverage Custom The code should be covered with unit
tests. Tests coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

www.hacken.io

System Overview

TrustSwap staking is a staking project with the following contract:
● Staking — a contract that rewards users for staking their tokens. APY

depends on the duration of the lock period and the size of the reward
pool.

Privileged roles
● The owner of the TrustSwap staking contract can add Swap tokens for

rewards, update the reward period and transfer the ownership of the
contract.

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

1. Unexpected reward multiplier.

The contract has the function `getDurationMultiplier`, which
calculates the reward multiplier based on the duration. The function
has some conditional statements for specific duration values, which
affect the calculated return value. The `duration` is an `uint256`
argument that represents the duration in seconds. In some cases, the
longer duration may lead to a lower multiplier. For example:

1) if the duration is equal to `15552000` (180 days), the
multiplier is `150`.

2) if the duration is equal to `15638400` (181 days), the
multiplier is `139`.

Some users may get fewer tokens if they set a specific bigger
`duration` value than other users.

Contracts: LockedStaking.sol

Function: getDurationMultiplier

Recommendation: Remove the conditional statements for specific
periods or specify the more profitable hardcoded periods in the
public documentation.

Status: Fixed (d7b62b2566208b228ecf19340b77e2706095e58c)

2. Exposed private key.

The repository contains an exposed private key, which may be used
during the contract deployment. If the repository is public, anybody
will get access to the deployer account and intercept the ownership
of the contract.

If the private key is exposed, the contract ownership may be
intercepted.

File: deployDev.js

Recommendation: Do not store private keys in the repository, all the
keys should be stored in a special `.env` file.

Status: Fixed (d7b62b2566208b228ecf19340b77e2706095e58c)

Medium

1. Checks-Effects-Interactions pattern violation.

The state variables are updated after competition result data has
been gathered from the oracle.

www.hacken.io

The state variables are updated after competition creation and
configuration has made.

This can lead to unexpected behaviors in the function execution.

Contracts: LockedStaking.sol

Function: addReward, updateReward, addLock, updateLockAmount,
updateLockDuration

Recommendation: Update state variables before making external calls.

Status: Fixed (a8d5f2b18816951a38fbbb102cf3822ac603e3c0)

2. Wrong function argument.

The contract has the internal function `calculateUserClaimable`,
which calculates the claimable amount of tokens for a specific `user`
address. During the calculations the function operates the
`userLastAccRewardsWeight[msg.sender]` value. This does not cause an
error because, in the LockedStaking contract, the
`calculateUserClaimable` function is only called when the `user`
argument is equal to `msg.sender`, but this is dangerous for the
contracts which may potentially inherit the LockedStaking.

This may cause a claimable amount calculation error in the contracts,
which will inherit the internal `calculateUserClaimable` function.

Contracts: LockedStaking.sol

Function: calculateUserClaimable

Recommendation: Update the function to replace the `msg.sender` with
a `user` address value.

Status: Fixed (11c9c1d8703dd8356d82f8c68bd1a10650b837e3)

Low

1. Implicit call to ERC-20 token.

The contract has the `unlock` function, which transfers the tokens to
the user. The token instance variable is not wrapped with an `IERC20`
explicitly.

This may be confusing for developers during smart contract
development.

Contracts: LockedStaking.sol

Function: unlock

Recommendation: It is recommended to explicitly wrap the `swapToken`
variable with an `IERC20` on `transfer` call.

Status: Fixed (a8d5f2b18816951a38fbbb102cf3822ac603e3c0)

2. Declaration of the popular math function.

The contract declares the popular pure math functions, such as `min`,
`max`.

www.hacken.io

This may lead to a redundant use of gas during the contract
deployment.

Contracts: LockedStaking.sol

Function: min, max

Recommendation: It is recommended to use the library for popular math
functions.

Status: Reported

3. Missing zero address validation.

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Contracts: LockedStaking.sol

Function: constructor

Recommendation: Add a require or conditional statement to check for
zero address.

Status: Fixed (b0f0d1a76806af19fa046dd71a88ceb2dd9208ed)

4. Floating pragma.

The project uses floating pragma ^0.8.0.

Contracts: LockedStaking.sol

Function: -

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (d7b31ff4c9951f0121892fe560d4b50f18ba3f33)

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

