
Customer: Bolide
Date: July 7th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Bolide.

Approved By Andrew Matiukhin | CTO Hacken OU

Type of Contracts ERC20 token; Farming; TokenSale; Strategy; Vesting

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://bolide.fi/

Timeline 21.03.2022 – 07.07.2022

Changelog

30.03.2022 – Initial Review
18.04.2022 – Revise
07.06.2022 – Revise
07.07.2022 - Revise

www.hacken.io

https://bolide.fi/

Table of contents
Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 7

Findings 8

Disclaimers 10

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Bolide (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/bolide-fi/contracts
Commit:

57f192ff4c4f1c8e8fbb99c60757f0327d76716c
Documentation: Yes
JS tests: Yes
Contracts:

farming/contracts/libs/PancakeVoteProxy.sol
farming/contracts/libs/Migrations.sol
farming/contracts/MasterChef.sol
farming/contracts/Timelock.sol
farming/contracts/libs/MockBEP20.sol

www.hacken.io

https://github.com/bolide-fi/contracts

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ EIP standards violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency
▪ Kill-Switch Mechanism

www.hacken.io

Executive Summary

The score measurements details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided some functional requirements and no technical
requirements. The contracts are forks of well-known ones. The total
Documentation Quality score is 10 out of 10.

Code quality
The total CodeQuality score is 9 out of 10. No NatSpecs.

Architecture quality
The architecture quality score is 10 out of 10.

Security score
As a result of the audit, security engineers found 1 low severity issue.
The security score is 10 out of 10. All found issues are displayed in the
“Issues overview” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.9

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

1. Possible rewards lost or receiving more

Changing allocPoint in the MasterBlid.set method while _withUpdate
flag is set to false may lead to rewards lost or receiving rewards
more than deserved.

Contract: MasterChef.sol

Function: set

Recommendation: Call updatePool(_pid) in the case if _withUpdate flag
is false and you do not want to update all pools.

Status: Fixed. (Revised Commit: 9ca0cf0)

Medium

1. Privileged ownership

The owner of the MasterBlid contract has permission to
`updateMultiplier`, add new pools, change pool’s allocation points,
and set a migrator contract (which will move all LPs from the pool to
itself) without community consensus.

Contract: MasterChef.sol

Recommendation: Consider using one of the following methodologies:

- Transfer ownership to a Time-lock contract with reasonable
latency (i.e. 24h) so the community may react to changes;

- Transfer ownership to a multi-signature wallet to prevent a
single point of failure;

- Transfer ownership to DAO so the community could decide whether
the privileged operations should be executed by voting.

Status: Fixed; Moved ownership to a Timelock (Revised Commit:
9ca0cf0)

Low

1. Excess writing operation

When _allocPoint is not changed for the pool, there is still an
assignment for a new value, which consumes gas doing nothing.

Contract: MasterChef.sol

Function: set

Recommendation:Move “poolInfo[_pid].allocPoint = _allocPoint”
assignment inside the if block.

www.hacken.io

Status: Fixed (Revised Commit: 9378f79)

2. Missing Emit Events

Functions that change critical values should emit events for better
off-chain tracking.

Contract: MasterChef.sol

Function: setMigrator, updateMultiplier, setBlidPerBlock

Recommendation: Consider adding events when changing critical values
and emit them in the function.

Status: Fixed (Revised Commit: 9378f79)

3. Floating solidity version

It is recommended to specify the exact solidity version in the
contracts.

Contracts: all

Recommendation: Specify the exact solidity version (ex. pragma
solidity 0.8.10 instead of pragma solidity ^0.8.0).

Status: Fixed (Revised Commit: 9378f79)

4. Balance updated after transfer

It is recommended to update the balance state before doing any token
transfer.

Contract: MasterChef.sol

Functions: emergencyWithdraw, migrate

Recommendation: Update the balance and do transfer after that.

Status: Reported (Revised Commit: 9378f79)

5. A public function that could be declared external

Public functions that are never called by the contract should be
declared external.

Contracts: MasterChef.sol

Functions: updateMultiplier, add, set, setBlidPerBlock, setMigrator,
setExpenseAddress, migrate, deposit, withdraw, enterStaking,
leaveStaking

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Fixed (Revised Commit: 9378f79)

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

