
Customer: Bolide
Date: July 7th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Bolide.

Approved By Andrew Matiukhin | CTO Hacken OU

Type of Contracts ERC20 token; Farming; TokenSale; Strategy; Vesting

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://bolide.fi/

Timeline 21.03.2022 – 07.07.2022

Changelog

30.03.2022 – Initial Review
18.04.2022 – Revise
07.06.2022 – Revise
07.07.2022 - Revise

www.hacken.io

https://bolide.fi/

Table of contents
Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 7

Findings 8

Disclaimers 10

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Bolide (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/bolide-fi/contracts
Commit:

57f192ff4c4f1c8e8fbb99c60757f0327d76716c
Documentation: Yes
JS tests: Yes
Contracts:

token/contracts/Bolide.sol
token/contracts/TokenVesting.sol
token/contracts/VestingController.sol
vesting/contracts/TreasuryVester.sol
vesting/contracts/libs/Bolide.sol

www.hacken.io

https://github.com/bolide-fi/contracts

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ EIP standards violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency
▪ Kill-Switch Mechanism

www.hacken.io

Executive Summary

The score measurements details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided some functional requirements and no technical
requirements. The total Documentation Quality score is 8 out of 10.

Code quality
The total CodeQuality score is 8 out of 10. Not following solidity code
style guidelines.

Architecture quality
The architecture quality score is 10 out of 10.

Security score
As a result of the audit, security engineers found 2 low severity issues.
The security score is 10 out of 10. All found issues are displayed in the
“Issues overview” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.6

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

1. No tests

It is highly recommended to add tests for the contract's code. Unit
tests would help ensure functions are working properly, while
integration tests would ensure contracts are working perfectly.

Contracts: Bolide.sol, TreasuryVester.sol

Recommendation: Create unit and integration tests covering up to 100%
statements and branches.

Status: Fixed (Revised Commit: 9ca0cf0)

Low

1. Floating solidity version

It is recommended to specify the exact solidity version in the
contracts.

Contracts: all

Recommendation: Specify the exact solidity version (ex. pragma
solidity 0.8.10 instead of pragma solidity ^0.8.0).

Status: Fixed (Revised Commit: 9378f79)

2. Outdated solidity version

It is not recommended to use an outdated solidity version.

Contracts: TreasuryVester.sol

Recommendation: Do not use solidity 0.6.12, use 0.8.10-0.8.13
instead.

Status: Fixed (Revised Commit: 9378f79)

3. Implicit variables visibility

State variables that do not have specified visibility are declared
internal implicitly. That could not be obvious.

Contract: Bolide.sol

Variable: timestampCreated

Recommendation: Always declare visibility explicitly.

www.hacken.io

Status: Reported (Revised Commit: 9ca0cf0)

4. A public function that could be declared external

Public functions that are never called by the contract should be
declared external.

Contracts: Bolide.sol, TreasuryVester.sol

Functions: Bolide.name, Bolide.symbol, Bolide.decimals,
Bolide.totalSupply, Bolide.balanceOf, Bolide.cap, Bolide.transfer,
Bolide.approve, Bolide.burn, Bolide.burnFrom, Bolide.transferFrom,
Bolide.increaseAllowance, Bolide.decreaseAllowance,
TreasuryVester.setRecipient, TreasuryVester.claim

Recommendation: Use the external attribute for functions never called
from the contract.

Status: Reported (Revised Commit: 9ca0cf0)

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

