
Customer: Paribus
Date: May 24th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Paribus.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type Lending/borrowing platform

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://paribus.io

Timeline 20.04.2022 – 24.05.2022

Changelog 09.05.2022 – Initial Review
24.05.2022 – Second Review

www.hacken.io

https://paribus.io/

Table of contents
Introduction 4

Scope 4

Severity Definitions 9

Executive Summary 10

Checked Items 11

System Overview 14

Findings 15

Disclaimers 17

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Paribus (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/Paribus/paribus-protocol
Commit:

da9d3cec639fe1d1f328cd5f0a1a82f4291821be
Technical Documentation:

Type: Litepaper (partial functional requirements provided)
Link: https://paribus.io/documents/PARIBUS-Litepaper-V1.0.pdf

Type: Technical description
Link: https://github.com/Paribus/paribus-protocol/blob/develop/README.md

JS tests: Yes
Contracts:

File: ./contracts/CompoundLens.sol
SHA3: 0b5805b4d05adce8a01f06761ed64d8b6db15b63b39179ab3b6f56e3a6f40ae1

File: ./contracts/Comptroller.sol
SHA3: 20734a3749ed9b3fdba43341b0b8b604007631ed2b52a8ea8da67b2f718b80f7

File: ./contracts/ComptrollerStorage.sol
SHA3: fff9102cce60e36b443912a6ff2ad58586e2ea922aea6eaef4a0be53c3a9ab6f

File: ./contracts/ErrorReporter.sol
SHA3: 13d30ccb98cca9ea681d64befffc314a014d736b359db2537f1c6f5629ae9711

File: ./contracts/Governance/PBXToken.sol
SHA3: a6da41ee0e7f0215c31015747977620df7361781b3cc4265ce17bb007aded01c

File: ./contracts/InterestRateModels/BaseJumpRateModelV2.sol
SHA3: df651bd4569540666f543a637c7dfd8ecae6dbdbab68a86dba81919d4e36b7af

File: ./contracts/InterestRateModels/DAIInterestRateModelV3.sol
SHA3: be3d9841b7712ac24693ab1de3fa632ba7dc3cd9c5eb84439e5f75cf9dcfb867

File: ./contracts/InterestRateModels/InterestRateModel.sol
SHA3: 4e6b1609318b8fe64b5b54b033edfcaba7bd956ed2d167d233fc988536babcd9

File: ./contracts/InterestRateModels/JumpRateModel.sol
SHA3: 565e14cb2064ba24dc7f0656f5568175c0ec75e4debbbbeb6e92f192bd7b3ea4

File: ./contracts/InterestRateModels/JumpRateModelV2.sol
SHA3: d44314698f9164c7c9d6789d252a412ed33e5ce2b4ba0ac64b6d9aba798ad463

File: ./contracts/InterestRateModels/LegacyInterestRateModel.sol
SHA3: 9c8c9ba78a900c14c8ad6d95a65352d367b3e3ceb31e8f05c4ae1e15ad530b95

www.hacken.io

https://github.com/Paribus/paribus-protocol
https://paribus.io/documents/PARIBUS-Litepaper-V1.0.pdf
https://github.com/Paribus/paribus-protocol/blob/develop/README.md

File: ./contracts/InterestRateModels/LegacyJumpRateModelV2.sol
SHA3: 3ca2ee9712be05a0e5d89b872b912f4493fe9609a88887ff91e4ff47eda78969

File: ./contracts/InterestRateModels/WhitePaperInterestRateModel.sol
SHA3: bf1ceb8b168929902930cfba83b8bd86d50116b37a35bdc19494fc77cfa71acc

File: ./contracts/Interfaces/ComptrollerInterface.sol
SHA3: 042419cffaac10e35a03e8c8aff3b0f64f729dab62c61b5fafb6b6c650a7ac41

File: ./contracts/Interfaces/EIP20Interface.sol
SHA3: 9f04d6854fb5ac2b37fadb8eed23264034cd2515f5fc0efbf4a942ec474e8506

File: ./contracts/Interfaces/EIP20NonStandardInterface.sol
SHA3: 83b3090f8985051b09b9b8bf131386957ae23819e0da190f503f7e69a250f654

File: ./contracts/Interfaces/IUniswapV2Factory.sol
SHA3: ffb9bbe0b89b584c04850a5607b1b2e9840ae827e61c4206558aec47e1289ea6

File: ./contracts/Interfaces/IUniswapV2Router.sol
SHA3: 96ba3e89c8c891062e894db392414a09b1de52353b73cd3f33dd8b44031c4cd2

File: ./contracts/Interfaces/PriceOracleInterface.sol
SHA3: 8e5326a843054239a7adbeab09fa5b881da5b23ce677f0d9c68158ba7c6303d3

File: ./contracts/Interfaces/PTokenInterfaces.sol
SHA3: 93e496f0ce65c4db4489de8b82ffc4e301363bf4673047461d9a49936f034d79

File: ./contracts/Liquidator.sol
SHA3: f03fd53e23a301ae5dc3bf76dfd06e5ab56d3dd70c6066d1f5c377ab0222f395

File: ./contracts/Maximillion.sol
SHA3: 2d56356fd27d67d61d7acbc6ded72a8dc6200d25cccde0fc274141a03c97c20e

File: ./contracts/PriceOracle/ArbitrumChainlinkPriceOracle.sol
SHA3: 0000f99d07ffe3872da09636193431ae8a94c5dee79b2b1a3dff794e3d66be5d

File: ./contracts/PriceOracle/ChainlinkPriceOracle.sol
SHA3: c8633124c9530dafa61daa42ce8db4dc6301b4678d128f0c824234f82dac7f6d

File: ./contracts/PriceOracle/RinkebyChainlinkPriceOracle.sol
SHA3: a63acf2f28248c85ee2e2f354f1929acd8b31259b397669c58be07a512beb1f2

File: ./contracts/PriceOracle/SimplePriceOracle.sol
SHA3: bde4c6ccdb78f0b1e05c79ad929d88845d1d8b3fe26dad6dd0a52f47045493ee

File: ./contracts/PToken/PErc20.sol
SHA3: 77e4acf4a2544813b25bea3498588eb88598fe517304409858d6b09bfec785be

File: ./contracts/PToken/PErc20Immutable.sol
SHA3: 3bbfb582f1b2136e8174412fe863bfb39bc88274ed9999964c70942c7e5f6aa5

File: ./contracts/PToken/PEther.sol
SHA3: 51e27702a1e335c0dea567e359f7bb0fb080740a8488135b297c29ccdf105f2c

File: ./contracts/PToken/PToken.sol
SHA3: cbcdc461a30e8d09935070a3e7d42c52983f9bdb51d1c74be54033e8a51e6e24

File: ./contracts/Reservoir.sol
SHA3: c0c2437e4641bd9989ac030288f39c7be782265880eadd70c5ead2bf2da28440

File: ./contracts/Unitroller.sol
SHA3: 11125a95df47f74401332db5bca0e5963e2d5ed87590aae3580a1d6dd9c9c121

www.hacken.io

File: ./contracts/Utils/CarefulMath.sol
SHA3: 6c8f42472882c2b2413befb5d0771032802d19fd1eba3eedac7576d4aecba33c

File: ./contracts/Utils/Exponential.sol
SHA3: 6f7dd16efb32233ceea4acb987ea067724f747e50ba187abbea236db623b786f

File: ./contracts/Utils/ExponentialNoError.sol
SHA3: 92df36a8865b7669e5d0125ca4b2910709a182c24a7bd82150485233370cda36

File: ./contracts/Utils/Ownable.sol
SHA3: 26174cc7c22780b3df5d44dd6b0015cc52779e02ad4bfb691d3eec075a494506

File: ./contracts/Utils/SafeMath.sol
SHA3: 60e6dc8f43c9ca59cf273c4691d1d1d7aac5ed724dfee53b0238f84edbf8e14f

File: ./contracts/Utils/Timelock.sol
SHA3: 3c46800318aa5ffe783d5477ab26f53097f6fdd3d37f185b738d7b0bf9c19097

Second review scope
Repository:

https://github.com/Paribus/paribus-protocol
Commit:

d6e83354692f6fd0e6b988ed06ae676c921d58a3
Technical Documentation:

Type: Litepaper (partial functional requirements provided)
Link: https://paribus.io/documents/PARIBUS-Litepaper-V1.0.pdf

Type: Technical description
Link: https://github.com/Paribus/paribus-protocol/blob/develop/README.md

JS tests: Yes
Contracts:

File: ./contracts/CompoundLens.sol
SHA3: 0b5805b4d05adce8a01f06761ed64d8b6db15b63b39179ab3b6f56e3a6f40ae1

File: ./contracts/Comptroller.sol
SHA3: 20734a3749ed9b3fdba43341b0b8b604007631ed2b52a8ea8da67b2f718b80f7

File: ./contracts/ComptrollerStorage.sol
SHA3: fff9102cce60e36b443912a6ff2ad58586e2ea922aea6eaef4a0be53c3a9ab6f

File: ./contracts/ErrorReporter.sol
SHA3: 13d30ccb98cca9ea681d64befffc314a014d736b359db2537f1c6f5629ae9711

File: ./contracts/Governance/PBXToken.sol
SHA3: b55ce22e5200ab67f9a400cd04cad4ca589312cca2ceab2235ed7945bc1cca88

File: ./contracts/InterestRateModels/BaseJumpRateModelV2.sol
SHA3: df651bd4569540666f543a637c7dfd8ecae6dbdbab68a86dba81919d4e36b7af

File: ./contracts/InterestRateModels/DAIInterestRateModelV3.sol
SHA3: be3d9841b7712ac24693ab1de3fa632ba7dc3cd9c5eb84439e5f75cf9dcfb867

File: ./contracts/InterestRateModels/InterestRateModel.sol
SHA3: 4e6b1609318b8fe64b5b54b033edfcaba7bd956ed2d167d233fc988536babcd9

File: ./contracts/InterestRateModels/JumpRateModel.sol
SHA3: 565e14cb2064ba24dc7f0656f5568175c0ec75e4debbbbeb6e92f192bd7b3ea4

File: ./contracts/InterestRateModels/JumpRateModelV2.sol
www.hacken.io

https://github.com/Paribus/paribus-protocol
https://paribus.io/documents/PARIBUS-Litepaper-V1.0.pdf
https://github.com/Paribus/paribus-protocol/blob/develop/README.md

SHA3: d44314698f9164c7c9d6789d252a412ed33e5ce2b4ba0ac64b6d9aba798ad463

File: ./contracts/InterestRateModels/LegacyInterestRateModel.sol
SHA3: 9c8c9ba78a900c14c8ad6d95a65352d367b3e3ceb31e8f05c4ae1e15ad530b95

File: ./contracts/InterestRateModels/LegacyJumpRateModelV2.sol
SHA3: 3ca2ee9712be05a0e5d89b872b912f4493fe9609a88887ff91e4ff47eda78969

File: ./contracts/InterestRateModels/WhitePaperInterestRateModel.sol
SHA3: bf1ceb8b168929902930cfba83b8bd86d50116b37a35bdc19494fc77cfa71acc

File: ./contracts/Interfaces/ComptrollerInterface.sol
SHA3: 042419cffaac10e35a03e8c8aff3b0f64f729dab62c61b5fafb6b6c650a7ac41

File: ./contracts/Interfaces/EIP20Interface.sol
SHA3: 9f04d6854fb5ac2b37fadb8eed23264034cd2515f5fc0efbf4a942ec474e8506

File: ./contracts/Interfaces/EIP20NonStandardInterface.sol
SHA3: 83b3090f8985051b09b9b8bf131386957ae23819e0da190f503f7e69a250f654

File: ./contracts/Interfaces/IUniswapV2Factory.sol
SHA3: ffb9bbe0b89b584c04850a5607b1b2e9840ae827e61c4206558aec47e1289ea6

File: ./contracts/Interfaces/IUniswapV2Router.sol
SHA3: 96ba3e89c8c891062e894db392414a09b1de52353b73cd3f33dd8b44031c4cd2

File: ./contracts/Interfaces/PriceOracleInterface.sol
SHA3: 8e5326a843054239a7adbeab09fa5b881da5b23ce677f0d9c68158ba7c6303d3

File: ./contracts/Interfaces/PTokenInterfaces.sol
SHA3: 93e496f0ce65c4db4489de8b82ffc4e301363bf4673047461d9a49936f034d79

File: ./contracts/Liquidator.sol
SHA3: 42ce4e2f932eeeba0ab1d3eafc092e83d7d7ace4d1a183855699e71b72649f1b

File: ./contracts/Maximillion.sol
SHA3: 2d56356fd27d67d61d7acbc6ded72a8dc6200d25cccde0fc274141a03c97c20e

File: ./contracts/PriceOracle/ArbitrumChainlinkPriceOracle.sol
SHA3: 0000f99d07ffe3872da09636193431ae8a94c5dee79b2b1a3dff794e3d66be5d

File: ./contracts/PriceOracle/ChainlinkPriceOracle.sol
SHA3: 90b19e2da49608aae5619208f136152066537845193f37fe74fc92c8dfaac694

File: ./contracts/PriceOracle/RinkebyChainlinkPriceOracle.sol
SHA3: 78fbee1b84489608a0ba27dbb82daaa84edae6d8a66e7f848fd2285d7cb03469

File: ./contracts/PriceOracle/SimplePriceOracle.sol
SHA3: bde4c6ccdb78f0b1e05c79ad929d88845d1d8b3fe26dad6dd0a52f47045493ee

File: ./contracts/PToken/PErc20.sol
SHA3: 77e4acf4a2544813b25bea3498588eb88598fe517304409858d6b09bfec785be

File: ./contracts/PToken/PErc20Delegate.sol
SHA3: 5ca251360c8bb7ba5dbacd87f79898d7edd9dc7cfb06c8547bb3ed5a90fa24d8

File: ./contracts/PToken/PErc20Delegator.sol
SHA3: 992820a8d539dd276cff5249507bb2a887fa15ce05fd625b0f572189a561a312

File: ./contracts/PToken/PErc20Immutable.sol
SHA3: 3bbfb582f1b2136e8174412fe863bfb39bc88274ed9999964c70942c7e5f6aa5

www.hacken.io

File: ./contracts/PToken/PEther.sol
SHA3: 51e27702a1e335c0dea567e359f7bb0fb080740a8488135b297c29ccdf105f2c

File: ./contracts/PToken/PToken.sol
SHA3: cbcdc461a30e8d09935070a3e7d42c52983f9bdb51d1c74be54033e8a51e6e24

File: ./contracts/Unitroller.sol
SHA3: 11125a95df47f74401332db5bca0e5963e2d5ed87590aae3580a1d6dd9c9c121

File: ./contracts/Utils/CarefulMath.sol
SHA3: 6c8f42472882c2b2413befb5d0771032802d19fd1eba3eedac7576d4aecba33c

File: ./contracts/Utils/Exponential.sol
SHA3: 6f7dd16efb32233ceea4acb987ea067724f747e50ba187abbea236db623b786f

File: ./contracts/Utils/ExponentialNoError.sol
SHA3: 92df36a8865b7669e5d0125ca4b2910709a182c24a7bd82150485233370cda36

File: ./contracts/Utils/Ownable.sol
SHA3: 26174cc7c22780b3df5d44dd6b0015cc52779e02ad4bfb691d3eec075a494506

File: ./contracts/Utils/SafeMath.sol
SHA3: 60e6dc8f43c9ca59cf273c4691d1d1d7aac5ed724dfee53b0238f84edbf8e14f

File: ./contracts/Utils/Timelock.sol
SHA3: 3c46800318aa5ffe783d5477ab26f53097f6fdd3d37f185b738d7b0bf9c19097

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided superficial functional requirements and technical
requirements. The total Documentation Quality score is 5 out of 10.

Code quality
The total CodeQuality score is 7 out of 10. Commented code. TODO comments.
Unit tests were provided.

Architecture quality
The architecture quality score is 10 out of 10. Follows best practices.

Security score
As a result of the audit, security engineers found 2 medium severity
issues, 1 medium issue was fixed and 1 remained. The security score is 10
out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.2.

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Failed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Failed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106 The contract should not be destroyed

until it has funds belonging to users. Passed

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Uninitialized
Storage
Pointer

SWC-109
Storage type should be set explicitly if
the compiler version is < 0.5.0. Not Relevant

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id.

Passed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

www.hacken.io

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Style guide
violation Custom Style guides and best practices should

be followed. Failed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Repository
Consistency Custom

The repository should contain a
configured development environment with
a comprehensive description of how to
compile, build and deploy the code.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io

System Overview

The Paribus Protocol is an Ethereum smart contract for supplying or
borrowing assets. Through the pToken contracts, accounts on the blockchain
supply capital (Ether or ERC-20 tokens) to receive pTokens or borrow assets
from the protocol (holding other assets as collateral). The Paribus pToken
contracts track these balances and algorithmically set interest rates for
borrowers.
The core contracts in the Paribus Protocol:

● PToken, PErc20 and PEther — the Paribus pTokens, self-contained
borrowing and lending contracts. PToken contains the core logic, and
PErc20 and PEther add public interfaces for Erc20 tokens and Ether,
respectively. Each PToken is assigned an interest rate and risk
model, and allows accounts to mint (supply capital), redeem (withdraw
capital), borrow and repay a borrow. Each PToken is an ERC-20
compliant token where balances represent ownership of the market.

● Comptroller — the risk model contract, which validates permissible
user actions and disallows actions if they do not fit certain risk
parameters. For instance, the Comptroller enforces that each
borrowing user must maintain a sufficient collateral balance across
all pTokens.

● Paribus (PBX) — the Paribus Governance Token.
● InterestRateModel — contracts which define interest rate models.

These models algorithmically determine interest rates based on the
current utilization of a given market (that is, how much of the
supplied assets are liquid versus borrowed).

● WhitePaperInterestRateModel — initial interest rate model, as defined
in the Whitepaper. This contract accepts a base rate and slope
parameter in its constructor.

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

1. Unfinished code

TODO comments in the code.

This indicates that the code is not yet complete.

Contracts: Liquidator.sol, Comptroller.sol, Reservoir.sol,
ChainlinkPriceOracle.sol

Recommendation: complete the code to meet all the requirements and
delete the TODO comments.

Status: Reported

2. The code does not consider all cases

The decimal normalization in the getUnderlyingPrice function works
correctly only if underlyingDecimals is 18 and priceDecimals is less
than or equal to 18.

The function may not work properly in some cases.

Contract: ChainlinkPriceOracle.sol

Function: getUnderlyingPrice

Recommendation: change decimals normalization to a more general one
that works properly with any decimals values.

Status: Fixed (Revised commit: d6e8335)

Low

No low severity issues were found.

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are

www.hacken.io

disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

