
Customer: Naramunz
Date: July 5th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Naramunz.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type Near FT token;

Platform Near

Language Rust

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://whitepaper.naramunz.com/token

Timeline 23.05.2022 – 30.06.2022

Changelog
23.05.2022 – Initial Review
10.06.2022 - Second Review
20.06.2022 - Third Review
05.07.2022 - Forth Review

www.hacken.io

https://whitepaper.naramunz.com/token

Table of contents
Introduction 4

Scope 4

Executive Summary 5

Severity Definitions 7

Findings 8

Recommendations 10

Disclaimers 11

www.hacken.io

https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b

Introduction

Hacken OÜ (Consultant) was contracted by Naramunz to conduct a Smart
Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/CRG-AB/NARZ.git
Commit:

cc31589255673d2da68a3c8003151e30eeabcbbf
Documentation: Yes
https://docs.near.org/docs/roles/integrator/fungible-tokens
Technical Documentation: Yes
https://docs.near.org/docs/roles/integrator/fungible-tokens
JS tests: No
Contracts: NARZ/ft/*

Second review scope
Repository:

https://github.com/CRG-AB/NARZ.git
Commit:

fa8c3438f067ae971bfb729994d624815cfedada
Documentation: Yes
https://docs.near.org/docs/roles/integrator/fungible-tokens
Technical Documentation: Yes
https://docs.near.org/docs/roles/integrator/fungible-tokens
JS tests: No
Contracts: NARZ/ft/*

Third review scope
Repository:

https://github.com/CRG-AB/NARZ.git
Commit:

f72303c458476c3a76291b6c6bd0c6e0c9350d51
Documentation: Yes
https://docs.near.org/docs/roles/integrator/fungible-tokens
Technical Documentation: Yes
https://docs.near.org/docs/roles/integrator/fungible-tokens
JS tests: No
Contracts: NARZ/ft/*

Forth review scope
Repository:

https://github.com/CRG-AB/NARZ.git
Commit:

cea4146abb1f6e8f8e438507183706f21f5144a2
Documentation: Yes

www.hacken.io

https://github.com/CRG-AB/NARZ.git
https://docs.near.org/docs/roles/integrator/fungible-tokens
https://docs.near.org/docs/roles/integrator/fungible-tokens
https://github.com/CRG-AB/NARZ.git
https://docs.near.org/docs/roles/integrator/fungible-tokens
https://docs.near.org/docs/roles/integrator/fungible-tokens
https://github.com/CRG-AB/NARZ.git
https://docs.near.org/docs/roles/integrator/fungible-tokens
https://docs.near.org/docs/roles/integrator/fungible-tokens
https://github.com/CRG-AB/NARZ.git

https://docs.near.org/docs/roles/integrator/fungible-tokens
Technical Documentation: Yes
https://docs.near.org/docs/roles/integrator/fungible-tokens
JS tests: No
Contracts: NARZ/ft/*

www.hacken.io

https://docs.near.org/docs/roles/integrator/fungible-tokens
https://docs.near.org/docs/roles/integrator/fungible-tokens

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided the required functional and technical documentation.
FT token documentation is not complete. The total Documentation Quality
score is 9 out of 10.

Code quality
The total CodeQuality score is 9 out of 10. Most FT token functionality is
hidden behind macros.

Architecture quality
The architecture quality score is 8 out of 10. All the logic is implemented
in one file. Some functions code could be moved to separate files to
improve code readability.

Security score
As a result of the fourth audit, the code contains no issues. The security
score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.6

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Description Status

Missing Signer
Checks

Case when instruction should only be available to
a restricted set of entities, but the program
does not verify that the call has been signed by
the appropriate entity (e.g., by checking
AccountInfo::is_signer).

Passed

Missing
Ownership
Checks

For accounts that are not supposed to be fully
user-controlled, the program does not check the
AccountInfo::owner field.

Passed

Redeployment
with
cross-instance
confusion

The smart contract fails to ensure that the wasm
code has the code it expects to have.

Passed

Arithmetic
overflow/underf
lows

If an arithmetic operation results in a higher or
lower value, the value will wrap around with
two’s complement.

Passed

Numerical
precision
errors

Numeric calculations on floating point can cause
precision errors, which can accumulate.

Passed

Loss of
precision in
calculation

Numeric calculations on integer types such as
division can loss precision.

Passed

Casting
truncation

Potential truncation problem with a cast
conversion.

Passed

Exponential
complexity in
calculation

Finding computational complexity in calculations. Passed

Over/under
payment of
loans

A loan overpayment is when paying extra towards a
loan over and above the agreed monthly
repayment.

A loan underpayment is when paying less towards a
loan over and below the agreed monthly
repayment.

Passed

Anti-pattern
function calls

Calling some anti-pattern function specific to
Near blockchain.

Passed

www.hacken.io

Unsafe Rust
code

The Rust type system does not check the memory
safety of unsafe Rust code. Thus, if a smart
contract contains any unsafe Rust code, it may
still suffer from memory corruptions such as
buffer overflows, use after frees, uninitialized
memory, etc.

Passed

Outdated
dependencies

Rust/Cargo makes it easy to manage dependencies,
but the dependencies can be outdated or contain
known security vulnerabilities. Cargo-outdated
can be used to check outdated dependencies.

Passed

Redundant code Repeated code or dead code that can be cleaned or
simplified to reduce code complexity.

Passed

Do not follow
security best
practices

Failing to properly use assertions, check user
errors, multisig, etc.

Passed

Project
specification
implementation
check

Ensuring that the contract logic correctly
implements the project specifications.

Passed

Contract-specif
ic low-level
vulnerabilities

Examining the code in detail for
contract-specific low-level vulnerabilities.

Passed

Ruling out
economic
attacks

Economic rules that can be exploited to steal
funds.

Passed

DoS (Denial of
Service)

Execution of the code should never be blocked by
a specific contract state unless it is required.

Passed

Front-running
or sandwiching

Checking for instructions that allow
front-running or sandwiching attacks.

Passed

Unsafe design
vulnerabilities

Checking for unsafe design which might lead to
common vulnerabilities being introduced in the
future.

Passed

As-of-yet Near
unknown classes
of
vulnerabilities

Checking for any other, as-of-yet unknown classes
of vulnerabilities arising from the structure of
the Near blockchain.

Passed

www.hacken.io

Rug-pull
mechanisms or
hidden
backdoors

Checking for rug-pull mechanisms or hidden
backdoors.

Passed

System Overview

A standard interface for fungible tokens that allows for a normal transfer
as well as a transfer and method call in a single transaction. The storage
standard addresses the needs (and security) of storage staking.

www.hacken.io

Findings

Critical

No critical severity issues were found.

High
No high severity issues were found.

Medium

1. Memory-exposure.
Memory access due to code generation flaw in cranelift module.
A bug in 0.67.0 of the cranelift x64 backend can create a scenario
that could result in a potential sandbox escape in a WebAssembly
module. Cranelift-codegen version 0.67.0 is used in one of the
contract dependencies.

Contracts: NARZ/ft

Recommendation: Consider Upgrading cranelift-codegen crate to
>=0.73.1.

Status: Fixed

2. Memory-corruption.
In the affected version of this crate, the result of the race
condition is that one or more tasks in the worker queue can be popped
twice instead of other forgotten and never popped. Crossbeam-deque
version 0.8.0 is used in one of the contract dependencies. Updating
the crate could resolve the issue.

Contracts: NARZ/ft

Recommendation: Consider Upgrading crossbeam-deque crate to >=0.8.1.

Status: Fixed

3. Memory-corruption.
The arr! macro silently and unsoundly extends arbitrary lifetimes to
'static.
fn unsound_lifetime_extension<'a, A>(a: &'a A) -> &'static A {
arr![&A; a][0] }
Generic-array version 0.12.3 is used in one of the contract
dependencies.

Contracts: NARZ/ft

Recommendation: Consider Upgrading generic-array to >=0.8.4, <0.9.0
OR >=0.9.1, <0.10.0 OR >=0.10.1, <0.11.0 OR >=0.11.2, <0.12.0 OR
>=0.12.4, <0.13.0 OR >=0.13.3

Status: Fixed

4. Denial-of-service.
The code contains several transmutes similar to this:
https://github.com/gz/rust-cpuid/issues/40#issue-787745997
Reading about transmutes in the nomicon, this is not correct because

www.hacken.io

https://github.com/gz/rust-cpuid/issues/40#issue-787745997
https://doc.rust-lang.org/nomicon/transmutes.html

the Rust compiler is free to reorder the struct fields.
Raw-cpuid version 7.0.4 is used in one of the contract dependencies.

Contracts: NARZ/ft

Recommendation: Consider Upgrading raw-cpuid crate to >=9.0.0.

Status: Fixed

5. Denial-of-service.
Regexes with large repetitions on empty sub-expressions take a long
time to parse.
Regex version 1.4.3 is used in one of the contract dependencies.

Contracts: NARZ/ft

Recommendation: Consider Upgrading regex crate to >=1.5.5.

Status: Fixed

6. Memory-corruption.
Data race in Iter and IterMut. Read more about this issue
thread_local version 1.1.3 is used in one of the contract
dependencies.

Contracts: NARZ/ft

Recommendation: Consider Upgrading regex crate to >=1.1.4.

Status: Fixed

7. Memory-corruption.
There are multiple vulnerabilities in Wasmtime:
-Use after free passing externrefs to Wasm in Wasmtime.
-Out-of-bounds read/write and invalid free with externrefs and GC
safepoints in Wasmtime.
-Wrong type for Linker-define functions when used across two Engines.
Dependency fungible-token-wrapper in near-sdk-sim uses Wasmtime
version 0.20.0.

Contracts: NARZ/ft

Recommendation: Consider Upgrading wasmtime to >=0.30.0

Status: Fixed

8. Does not implement Drop.
Affected versions of this crate did not implement Drop when
#[zeroize(drop)] was used on an enum. This can result in memory not
being zeroed out after dropping it, which is exactly what is intended
when adding this attribute.
The flaw was corrected in version 1.2 and #[zeroize(drop)] on enums
now properly implements Drop.
Crate zeroize_derive version 1.0.1 is used instead of >=1.1.1.

Contracts: NARZ/ft

Recommendation: Consider upgrading zeroize_derive to >=1.1.1.

Status: Fixed

www.hacken.io

https://github.com/Amanieu/thread_local-rs/issues/33#issue-1111714506

9. Potential segfault in the time crate.
There is a segfault detected in time crate version 0.1.44.
Getenv and setenv in libc are not thread-safe, and most
implementations of localtime_r in libc directly call getenv. This
means that localtime_r may have data race with setenv.

Contracts: NARZ/ft

Recommendation: Consider upgrading the time crate to >=0.2.23

Status: Fixed

Low

1. Unused import.
Unused import `near_sdk::MockedBlockchain` in NARZ/ft/src/lib.rs.

Contracts: NARZ/ft

Recommendation: Remove unused imports to improve code readability.

Status: Fixed

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

