
Customer: DeRace
Date: May 17th, 2022



This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
DeRace

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type Bridge

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://derace.com

Timeline 02.05.2022 – 17.05.2022

Changelog
06.05.2022 – Initial Review
12.05.2022 - Second Review
21.05.2022 - Third Review

www.hacken.io

https://derace.com


Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 10

Findings 11

Disclaimers 13

www.hacken.io



Introduction

Hacken OÜ (Consultant) was contracted by DeRace (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/Derace/bridge-contract
Commit:

6a26d259645ff4572b83e688ebad9b194ed22fd8
Technical Documentation:

Type: Technical description
Link: DeRaceBridge.md

JS tests: No
Contracts Addresses: None
Contracts:

File: ./contract.sol
SHA3: 9aaa4236d912c5e0adbc4f0b088b05b849dce08b71c8bbedb66f4ec598432ad0

Second review scope
Repository:

https://github.com/Derace/bridge-contract
Commit:

0e029d0a90efd1937aef8e03ccadd97a3472e27a
Technical Documentation:

Type: Technical description
Link: DeRaceBridge.md

JS tests: Yes
Contracts Addresses: None
Contracts:

File: ./contract.sol
SHA3: 440ca9a30f4f1ea5c9774c6720b7be130e1e4bf76ae6a6c1cc142ed90f78586b

Third review scope
Repository:

https://github.com/Derace/bridge-contract
Commit:

ad4f3bd813346b34504c9744997d137c8bb904e1
Technical Documentation:

Type: Technical description
Link: DeRaceBridge.md

JS tests: Yes
Contracts Addresses: None
Contracts:

File: ./contracts/DeRaceBridge.sol
SHA3: 2251ebecdc92147c121acda245c6011e3e948c5c10de1ff44b125573b076ba2e

www.hacken.io

https://github.com/Derace/bridge-contract
https://github.com/Derace/bridge-contract/blob/main/docs/DeRaceBridge.md
https://github.com/Derace/bridge-contract
https://github.com/Derace/bridge-contract/blob/main/docs/DeRaceBridge.md
https://github.com/Derace/bridge-contract
https://github.com/Derace/bridge-contract/blob/main/docs/DeRaceBridge.md


Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io



Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided a technical description of the smart contract and
functional details. The total Documentation Quality score is 7 out of 10.
The whitepaper was not provided.

Code quality
The total Code Quality score is 10 out of 10.

Architecture quality
The architecture quality score is 9 out of 10. The test environment is
missing typechain module required for launching the tests.

Security score
As a result of the audit, security engineers found no issues. The security
score is 10 out of 10.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.6

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb


Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default Visibility SWC-100
SWC-108

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer Overflow
and Underflow SWC-101

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Passed

Outdated Compiler
Version SWC-102 It is recommended to use a recent

version of the Solidity compiler. Passed

Floating Pragma SWC-103
Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Not Relevant

Access Control &
Authorization CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106 The contract should not be destroyed

until it has funds belonging to users. Passed

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Uninitialized
Storage Pointer SWC-109 Storage type should be set explicitly

if the compiler version is < 0.5.0. Not Relevant

Assert Violation SWC-110 Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity Functions SWC-111 Deprecated built-in functions should

never be used. Passed

Delegatecall to
Untrusted Callee SWC-112 Delegatecalls should only be allowed to

trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race Conditions SWC-114 Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through tx.origin SWC-115 tx.origin should not be used for

authorization. Passed

Block values as a
proxy for time SWC-116 Block numbers should not be used for

time calculations. Passed

www.hacken.io

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116


Signature Unique
Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id.

Passed

Shadowing State
Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources of
Randomness SWC-120 Random values should never be generated

from Chain Attributes. Not Relevant

Incorrect
Inheritance Order SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted Addresses

EEA-Level-2
SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of unused
variables SWC-131

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets integrity Custom Funds are protected and cannot be
withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data Consistency Custom Smart contract data should be
consistent all over the data flow. Passed

Flashloan Attack Custom

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Repository
Consistency Custom

The repository should contain a
configured development environment with
a comprehensive description of how to
compile, build and deploy the code.

Passed

www.hacken.io

https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/


Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in
the future.

Failed

www.hacken.io



System Overview

DeRaceBridge is the bridge that holds all the assets that are transferred
off-chain. When assets are transferred back on the chain, they are redeemed
from the bridge with a specific validator-signed message.

Privileged roles
● The creator of the contract is given DEFAULT_ADMIN_ROLE. This role

can grant SUPER_VALIDATOR_ROLE and VALIDATOR_ROLE to the other
addresses.

● SUPER_VALIDATOR_ROLE is essential for managing the contract. As such,
it is able to pause or unpause the contract, skip a nonce for an
address, and migrate different types of tokens to a certain address.
This role should be used by multisig wallets only.

● VALIDATOR_ROLE is an off-chain entity that confirms off-chain
transfers and transfers funds to a certain address.

www.hacken.io



Findings

Critical

No critical severity issues were found.

High

Highly permissive role access

The SUPER_VALIDATOR_ROLE has a right to migrate funds from the smart
contract to any address without any restrictions.

Contract: DeRaceBridge.sol

Function: migrateErc20, migrateErc721, migrateErc721Any

Recommendation: set up certain prerequisites about when
SUPER_VALIDATOR_ROLE is able to migrate funds or add a
multi-signature request for a withdraw.

Status: Mitigated. The customer stated that wallets with such a role
are multisig.

Medium

No medium severity issues were found.

Low

1. Interface casting Gas cost

Converting address to be an interface is gas inefficient compared to
converting address to an interface.

This increases transaction Gas.

Contract: DeRaceBridge.sol

Function: transferErc20

Recommendation: replace address with IERC20 in the function
signature.

Status: Fixed (c0345b2)

2. Function visibility Gas cost

Public visibility is used for functions that are not called
internally.

This increases transaction Gas.

Contract: DeRaceBridge.sol

Function: transferErc20

Recommendation: replace function visibility from public to external.

Status: Fixed (c0345b2)
www.hacken.io

https://github.com/Derace/bridge-contract/commit/c0345b23a095fc9749be1abde742d20064bbc165
https://github.com/Derace/bridge-contract/commit/c0345b23a095fc9749be1abde742d20064bbc165


Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io


