
Customer: DeRace
Date: June 9th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
DeRace.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type Staking

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://derace.com/

Timeline 26.04.2022 – 09.06.2022

Changelog 29.04.2022 – Initial Review
17.05.2022 – Second Review

www.hacken.io

https://derace.com/

Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 10

Findings 11

Disclaimers 13

www.hacken.io

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by DeRace (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/Derace/staking-contract
Commit:

323b743e4bb60dd4ca8f4d6a18b5f7589354c6ab
Technical Documentation: No
JS tests: No
Deployed Contracts Addresses: No
Contracts:

File: ./StakeERC20ForERC721v2.sol

Second review scope
Repository:

https://github.com/Derace/staking-contract
Commit:

cf356561175dfe49a3d93ba85d553324107c4a0c
Technical Documentation: No
JS tests: Yes
Deployed Contracts Addresses: No
Contracts:

File: ./StakeERC20ForERC721v2.sol

www.hacken.io

https://github.com/Derace/staking-contract
https://github.com/Derace/staking-contract

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution.

www.hacken.io

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided functional and technical requirements. The total
Documentation Quality score is 10 out of 10.

Code quality
The total CodeQuality score is 5 out of 10. No unit tests were provided.

Architecture quality
The architecture quality score is 7 out of 10. Configured development
environment provided but missing readme how to use it.

Security score
As a result of the audit, security engineers found 1 low severity issue.
The security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.2.

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101 If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102 It is recommended to use a recent
version of the Solidity compiler.

Passed

Floating
Pragma

SWC-103 Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value

SWC-104 The return value of a message call
should be checked.

Not Relevant

Access Control
&
Authorization

CWE-284 Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

SWC-106 The contract should not be destroyed
until it has funds belonging to users.

Passed

Check-Effect-
Interaction

SWC-107 Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Uninitialized
Storage
Pointer

SWC-109 Storage type should be set explicitly if
the compiler version is < 0.5.0.

Not Relevant

Assert
Violation

SWC-110 Properly functioning code should never
reach a failing assert statement.

Not Relevant

Deprecated
Solidity
Functions

SWC-111 Deprecated built-in functions should
never be used.

Passed

Delegatecall
to Untrusted
Callee

SWC-112 Delegatecalls should only be allowed to
trusted addresses.

Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

www.hacken.io

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128

Race
Conditions

SWC-114 Race Conditions and Transactions Order
Dependency should not be possible.

Passed

Authorization
through
tx.origin

SWC-115 tx.origin should not be used for
authorization.

Passed

Block values
as a proxy for
time

SWC-116 Block numbers should not be used for
time calculations.

Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id.

Passed

Shadowing
State Variable

SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness

SWC-120 Random values should never be generated
from Chain Attributes.

Not Relevant

Incorrect
Inheritance
Order

SWC-125 When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2
SWC-126

All external calls should be performed
only to trusted addresses.

Passed

Presence of
unused
variables

SWC-131 The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation

EIP EIP standards should not be violated. Not Relevant

Assets
integrity

Custom Funds are protected and cannot be
withdrawn without proper permissions.

Passed

User Balances
manipulation

Custom Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency

Custom Smart contract data should be consistent
all over the data flow.

Passed

Flashloan
Attack

Custom When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation

Custom Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

www.hacken.io

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops

Custom Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation

Custom Style guides and best practices should
be followed.

Passed

Requirements
Compliance

Custom The code should be compliant with the
requirements provided by the Customer.

Passed

Repository
Consistency

Custom The repository should contain a
configured development environment with
a comprehensive description of how to
compile, build and deploy the code.

Failed

Tests Coverage Custom The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

www.hacken.io

System Overview

StakeERC20ForERC721v2 - is a staking system with the following contract:
● StakeERC20ForERC721v2 — simple staking contract for staking ERC20

tokens and accumulates a score based on the number of tokens staked
and staking period. Afterward, users can redeem reward tokens based
on accumulated score and reward token price.
It has the following attributes:

○ Token: Token for staking.
○ Reward: Reward token for staking.
○ Price: Price of the reward token.
○ External score: external score source.

Privileged roles
● An account with the TREASURY_ROLE can withdraw, deposit a specified

amount of reward tokens.
● An account with the TREASURY_ROLE can change the price of the reward

token. As a result, the amount of reward tokens can be changed.

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

Missing validation.

Staking token and reward token addresses can be the same.

As a result, reward and staking balances will be merged and rewards
can be payed using tokens that belongs to stakers.

Contracts: contract.sol

Function: constructor

Recommendation: ensure that staking token and reward addresses are
different.

Status: Fixed

Low

Style guide violation.

The contract file name does not follow the Solidity code style guide.

Contracts: contract.sol

Recommendation: Follow the official Solidity code style guide.

https://docs.soliditylang.org/en/v0.8.13/style-guide.html

Status: New

www.hacken.io

https://docs.soliditylang.org/en/v0.8.13/style-guide.html

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

