
Customer: Embr Holdings Limited
Date: July 04th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Embr
Holdings Limited

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type DEX Router

Platform Not Specified

Network Not Specified

Language Solidity

Methods Manual Review, Automated Review, Architecture review

Website https://joinembr.com

Timeline 13.05.2022 – 04.07.2022

Changelog
16.05.2022 – Initial Review
24.05.2022 – Second Review
04.07.2022 - Third Review

www.hacken.io

https://joinembr.com

Table of contents
Introduction 4

Scope 4

Severity Definitions 5

Executive Summary 6

Checked Items 7

System Overview 10

Findings 11

Disclaimers 14

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Embr Holdings Limited (Customer)
to conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is Checkout Contract in the repository:

Initial review scope
Repository:https://github.com/teamembr/router-contract/blob/main/contracts/
Checkout.sol
Commit:

588e669
Technical Documentation:

Type: Litepaper (no functional requirement provided)
Link: https://coda.io/@joinembr/embr-litepaper

Integration and Unit Tests: No
Contracts:

File: ./contracts/Checkout.sol
SHA3: bc8a63388ccf4b3a8d2610b7228db043aab2fb0ebf415e206732b97d84cb34df

Second review scope
Repository:https://github.com/teamembr/router-contract/blob/main/contracts/
Checkout.sol
Commit:

fc00c60
Technical Documentation:

Type: Litepaper (no functional requirement provided)
Link: https://coda.io/@joinembr/embr-litepaper

Integration and Unit Tests: No
Contracts:

File: ./contracts/Checkout.sol
SHA3: f8ce1ade955e51649b038f6ae25676abccf23b3b8293071aa4a752e94d462498

Third review scope
Repository:https://github.com/teamembr/router-contract/blob/main/contracts/
Checkout.sol
Commit:

a00770c
Technical Documentation:

Type: Litepaper (no functional requirement provided)
Link: https://coda.io/@joinembr/embr-litepaper

Type: Technical Requirements
Link: https://github.com/teamembr/router-contract/blob/main/REQUIREMENTS.md

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/Checkout.sol
SHA3: 073f3523da0d8543c84e4235781270378d414f723b5820d339a6d6bd6cf9ae60

www.hacken.io

https://github.com/teamembr/router-contract/blob/main/contracts/Checkout.sol
https://github.com/teamembr/router-contract/blob/main/contracts/Checkout.sol
https://coda.io/@joinembr/embr-litepaper
https://github.com/teamembr/router-contract/blob/main/contracts/Checkout.sol
https://github.com/teamembr/router-contract/blob/main/contracts/Checkout.sol
https://coda.io/@joinembr/embr-litepaper
https://github.com/teamembr/router-contract/blob/main/contracts/Checkout.sol
https://github.com/teamembr/router-contract/blob/main/contracts/Checkout.sol
https://coda.io/@joinembr/embr-litepaper

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided both functional and technical requirements. The total
Documentation Quality score is 10 out of 10.

Code quality
The total CodeQuality score is 8 out of 10. Code follows official language
style guides. Some of the positive and negative tests are missing.

Architecture quality
The architecture quality score is 10 out of 10. Clean and clear
architecture, well structured and explained development environment.

Security score
As a result, the code contains 0 issues. The security score is 10 out of
10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8.

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106 The contract should not be destroyed

until it has funds belonging to users. Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Uninitialized
Storage
Pointer

SWC-109
Storage type should be set explicitly if
the compiler version is < 0.5.0. Not Relevant

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Not Relevant

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Not Relevant

www.hacken.io

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Not Relevant

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

www.hacken.io

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Not Relevant

Repository
Consistency Custom

The repository should contain a
configured development environment with
a comprehensive description of how to
compile, build and deploy the code.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io

System Overview

Embr Checkout is a Decentralized Exchange Router system. The audit scope
verifies only the Checkout contract. Though, the security of the
Decentralized Exchange platforms with which the contract interacts is not
included in this scope.

● Checkout - a contract that forwards the swap orders to the allowed
Decentralized Exchange platforms with a 0.5% fee deduction.

Privileged roles
● The Checkout contract has one privileged role named “owner” which has

the following privileges:
○ Can set supported DEX addresses
○ Can specify DEX addresses that have a different interface
○ Can change fee rate
○ Can withdraw Ethers from the contract

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

1. Missing edge case check for parameter

According to the contract logic, “fee” variable cannot be bigger than
10000. However, there is no check in the "setFee" function for this
case.

This can cause errors during fee calculations.

Contract: Checkout.sol

Function: setFee

Recommendation: Implement edge case check.

Status: Fixed (Revised commit: fc00c60)

2. Impractical code block

"swapExactETHForTokens" function checks if the provided "exchangeKey"
is "traderjoe" because Traderjoe's router contract function names use
AVAX instead of ETH. However, some other DEX platforms on Avalanche
Blockchain use this pattern, but it is impossible to interact with
these DEX platforms using the current version of the contract.

Contract: Checkout.sol

Function: swapExactETHForTokens

Recommendation: Check whether the mentioned problem affects the
functionality of the system. If so, revise the function.

Status: Fixed (Revised commit: fc00c60)

3. Usage of Gas-Inefficient methods

In "swapExactETHForTokens" function, string comparison has been
preferred to check provided key, and string mapping has been
preferred to reach DEX addresses. However, it is Gas-inefficient to
use strings for mappings and comparisons in Solidity.

This issue leads to high Gas usage.

Contract: Checkout.sol

Function: swapExactETHForTokens

www.hacken.io

Recommendation: Take DEX address as input parameter and use "address
to bool" mapping to check is supported or not. Use "address to bool"
mapping instead of string comparison.

Status: Fixed (Revised commit: fc00c60)

Low

1. Unlocked pragma

Unlocked pragmas may cause the contract to be deployed with a
different Solidity version from the tested.

This can lead to encountering undiscovered bugs.

Contract: Checkout.sol

Function: -

Recommendation: Lock pragma to a specific compiler version.

Status: Fixed (Revised commit: fc00c60)

2. Using SafeMath

SafeMath is generally not needed after Solidity version 0.8.

Contract: Checkout.sol

Function: -

Recommendation: Remove SafeMath.

Status: Fixed (Revised commit: fc00c60)

3. Missing zero address validation

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Contract: Checkout.sol

Functions: constructor, swapExactETHForTokens, setDexRouter,
setTreasuryAddress, withdraw

Recommendation: Implement zero address checks.

Status: Fixed (Revised commit: fc00c60)

4. Missing zero amount validation

Message value is being used without checking against the possibility
of 0.

This can lead to unnecessary transfer calls.

Contract: Checkout.sol

Function: swapExactETHForTokens

www.hacken.io

Recommendation: Implement zero amount check

Status: Fixed (Revised commit: fc00c60)

5. Unused libraries

“IERC20”, “SafeERC20” and “Address” libraries have no implementation
on the contract.

Keeping unused libraries increases Gas costs during deployment.

Contract: Checkout.sol

Function: -

Recommendation: Remove unused libraries.

Status: Fixed (Revised commit: a00770c)

6. Redundant variable

“treasuryAddress” variable has no effect on the contract logic.

Keeping redundant variables increases Gas costs during deployment.

Contract: Checkout.sol

Function: -

Recommendation: Remove redundant variables.

Status: Fixed (Revised commit: fc00c60)

7. Missing event emitting

Events for critical state changes should be emitted for tracking
things off-chain.

Contract: Checkout.sol

Functions: setDexRouter, setFee, withdraw

Recommendation: Create and emit related events.

Status: Fixed (Revised commit: fc00c60)

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

