
Customer: PAID Network
Date: July 6th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for PAID
Network

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type Launchpad

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website PAID Network

Timeline 25.05.2022 – 06.07.2022

Changelog 31.05.2022 – Initial Review
06.07.2022 - Second Review

www.hacken.io

https://paidnetwork.com/

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12

Disclaimers 15

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by PAID Network (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/PAIDNetwork/launchpad-sc-multipool/commit/04d60aaf
cb86857aecd817a67b87ef3bb92620be
Commit:

04d60aafcb86857aecd817a67b87ef3bb92620be
Technical Documentation: No

Integration and Unit Tests: Yes (in “test” directory)
Contracts:

File: ./contracts/IgnitionAccess.sol
SHA3: 3de8e3abf85cf06370bdcbcc7a99b4aacc498a5856c09c72dcfa6fd24b3e5519

File: ./contracts/IgnitionCore.sol
SHA3: 5d5f3e111f707fe93d74557eed67a116b78ce8353dda49a14133fa2625fd4240

File: ./contracts/IgnitionEvents.sol
SHA3: 76c40e57258a1f1802c8f2dc9ec42d80be7c0e51f9c6ca8f8e2af41f2025a68d

File: ./contracts/IgnitionIDO.sol
SHA3: d7d96c2fee90d14549362b037ca98516d4f92358378617eb1a893a832f09b522

File: ./contracts/IgnitionPools.sol
SHA3: 0bd77b0ce3e0e57a691e5ce023a3784d2e6508d614a42b3dec44b3b7e032f202

File: ./contracts/IgnitionTransfers.sol
SHA3: 7cb9ed3c7bff4434d03e41adf54a7fd97da02e91e175e1e5a790845602bf5c19

File: ./lib/BitOpMapPool.sol
SHA3: 39c9ec2c51e0f957dfd96129d4e72ca38a33d0ef21a2a2dd4e87ea21db80479b

File: ./lib/Data.sol
SHA3: 35de6759fb3462da3eff6db51dab3474b5d272abda8f9c9d69d102d2750dc288

File: ./lib/LibPool.sol
SHA3: 020ad70ff2b8095e65c292684bddd3c9a5193633a080aacd8ea047fa2f2ad3f2

File: ./lib/Math.sol
SHA3: 931e6559ed50e2b95b3a51586bb7edd7a15d04d57d6b720200afecffdfb46dba

Second review scope
Repository:

https://github.com/PAIDNetwork/launchpad-sc-multipool/commit/60d0d5c1
e755edc4c8c63b81aa058201babbfc63

Commit:
60d0d5c1e755edc4c8c63b81aa058201babbfc63

www.hacken.io

https://github.com/PAIDNetwork/launchpad-sc-multipool/commit/04d60aafcb86857aecd817a67b87ef3bb92620be
https://github.com/PAIDNetwork/launchpad-sc-multipool/commit/04d60aafcb86857aecd817a67b87ef3bb92620be
https://github.com/PAIDNetwork/launchpad-sc-multipool/commit/60d0d5c1e755edc4c8c63b81aa058201babbfc63
https://github.com/PAIDNetwork/launchpad-sc-multipool/commit/60d0d5c1e755edc4c8c63b81aa058201babbfc63

Technical Documentation: Yes
Type: Repository Readme
Link

Integration and Unit Tests: Yes (in “test” directory)
Contracts:

File: ./contracts/ERC20Token.sol
SHA3: f55053ce1d6812954394502a1b1a206e9efbf96985b9f896098ac76b3817739e

File: ./contracts/IgnitionAccess.sol
SHA3: 13b564d0f13485bd58b586ca1e8db0427556730d7ba9d59967d62c4670e067b2

File: ./contracts/IgnitionCore.sol
SHA3: 6555025cb4750d51ec4e933ea4d9f3fa3f34ef46c36e75529ae36722211c2b15

File: ./contracts/IgnitionIDO.sol
SHA3: 380941087ff75cebb75bffd31f8487fee072d3247177083698ab858df40be64a

File: ./contracts/IgnitionPools.sol
SHA3: 3ea89dec59298c5350ed6175963ab1989eaac7ffdd9ca122d660afdf53f61477

File: ./contracts/IgnitionTransfers.sol
SHA3: 13f4be674ea61a607cb82de7084549726646a9ec2831dbf0a0acdace9d39850f

File: ./contracts/PplToken.sol
SHA3: 440e60f45b6a6ee96a3fab40ad71c5079e45caad1fa2388c0037fa4295f8eee0

File: ./contracts/SampleToken.sol
SHA3: a729f0c5ab2caa400f7fd1975ae2683d0fc14f570378a439ebd06764983fe23d

File: ./contracts/SndToken.sol
SHA3: bc07f36f2dba6b189ee45bfb0ea2c6a52051e6bd0c4693ebf2107fc368ef2e94

www.hacken.io

https://github.com/PAIDNetwork/launchpad-sc-multipool/blob/main/README.md

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10. Functional and
technical description provided in repository Readme. Code is followed by
NatSpec comments.

Code quality
The total Code Quality score is 8 out of 10. Deployment and basic user
interactions are covered with tests not available for running due to
dependency errors.

Architecture quality
The architecture quality score is 4 out of 10. Smart contracts fail to
follow single responsibility principle, therefore creating deep multi-level
inheritance. It is advised to separate the code into different files
according to logical concern; to use abstract keyword for parental smart
contracts. Several template code patterns were found.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.2

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Passed

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Uninitialized
Storage
Pointer

SWC-109
Storage type should be set explicitly if
the compiler version is < 0.5.0. Not Relevant

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race SWC-114 Race Conditions and Transactions Order Passed

www.hacken.io

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Conditions Dependency should not be possible.

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id.

Passed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Passed

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There

Passed

www.hacken.io

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

should not be any cases when execution
fails due to the block Gas limit.

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Not Relevant

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Failed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io

System Overview

PAID Network is a launchpad contract system with the following contracts:
● IgnitionAccess — a contract with modifiers that control smart

contract roles and managers; checks for user whitelist.
● IgnitionCore - a core contract that stores information about IDOs and

pools; has ownership and pausing functionality.
● IgnitionEvents - a contract that declares all events used by the core

contract.
● IgnitionIDO - IDO pool of the launchpad.
● IgnitionPool - the pool of project’s tokens.
● IgnitionTransfers - a contract with the functionality of buying,

redeeming, and withdrawing tokens.

Privileged roles
● The owner and the admin can finalize the pool, set whitelist, revert

finalizing, add tokens to pool, set rate in pool, base tier, start
and end date. They can pause and unpause the pool, set the total
amount of tokens, transfer pool, set private pool, quote assets, and
disable the pool.

● The owner and rbac manager can get the address of the project and set
the admin wallet of it.

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

Highly permissive role

The owner can disable the pool, set ratez and base tier, change the
pool's start and end date, pause and unpause token buying functions.

This can lead to token manipulation.

Contracts: IgnitionCore, IgnitionPools, IgnitionTransfers

Functions: pause, pausePool, buyTokensETH, buyTokensQuoteAsset,
redeemTokens, disablePool, setStartDate, setEndDate, setRate,
setBaseTier

Recommendation: Add highly permissive functionality to the
documentation.

Status: Fixed (revised commit: 60d0d5c)

Medium

1. Code documentation contradiction

Some statements in the code documentation are opposite to code
functionality. Documentation of the IgnitionTransfers contract
declares the contract as the events contract, but the actual events
contract is the IgnitionEvents.

This makes code hard to read and evaluate

Contract: -

Functions: -

Recommendation: Refactor the code project documentation and add the
code requirements.

Status: Fixed (revised commit: 60d0d5c)

2. Check-effect interaction pattern violation

It is required to follow the pattern even when calling to the trusted
contract.

Contract: IgnitionTransfers

Functions: redeemTokens

Recommendation: Implement the Check-Effect Interaction pattern.

Status: Fixed (revised commit: 60d0d5c)

www.hacken.io

3. Unchecked call return value

The return value of a transfer function call is not checked.
Execution will resume even if the called contract throws an
exception.

This may result in a loss of funds.

Contract: IgnitionTransfers

Functions: withdrawUnsoldTokens

Recommendation: Use safeTransfer method instead of transfer

Status: Fixed (revised commit: 60d0d5c)

Low

1. Unused variable

Event LogAdminOnPoolToken is declared and never used.

Contract: IgnitionEvents

Functions: -

Recommendation: Remove unused field.

Status: Fixed (revised commit: 60d0d5c)

2. Functions can be declared as external

Public functions that are never called in the contract should be
marked external.

This increases transaction Gas.

Contracts: IgnitionCore, IgnitionPools

Functions: initialize, mintToWallet, calculateAmount, setEndDate

Recommendation: Declare mentioned functions as external.

Status: Fixed (revised commit: 60d0d5c)

3. State variable default visibility

The explicit visibility makes it easier to catch incorrect
assumptions about who can access the variable.

Contracts: IgnitionAccess, IgnitionCore, IgnitionTransfers

Variables: merkleRoots

Recommendation: Specify variables as public, internal, or private.
Explicitly define visibility for all state variables.

Status: Fixed (revised commit: 60d0d5c)

www.hacken.io

4. Redundant casting

Unnecessary uint8 casting makes code harder to read and consumes more
Gas.

Contracts: IgnitionIDO

Functions: finalize, revert_finalize

Recommendation: Remove redundant casting.

Status: Fixed (revised commit: 60d0d5c)

5. Incorrect data location of function arguments

Functions use memory data location for saving function arguments.

This increases transaction Gas.

Contracts: IgnitionIDO, IgnitionPools, LibPool

Functions: setWhiteList, addTokenToPool, generatePackage

Recommendation: Use calldata as data location because it will avoid
copies and ensures that the data cannot be modified.

Status: Fixed (revised commit: 60d0d5c)

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

