
Customer: Hedgey
Date: September 23st, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Hedgey

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type Swap

Platform EVM

Network Ethereum

Language Solidity

Methods Manual Review, Automated Review, Architecture Review

Website https://hedgey.finance/

Timeline 30.08.2022 – 23.09.2022

Changelog 02.09.2022 – Initial Review
23.09.2022 – Second Review

www.hacken.io
2

https://hedgey.finance/

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 13

Disclaimers 14

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by Hedgey (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/hedgey-finance/HedgeyDAOSwap
Commit:

091fb2f4cd94bdd8e9137c4e0b72dc89b490f71b
Documentation:

Functional requirements and technical description

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/HedgeyDAOSwap.sol
SHA3: 8906f0081675a05fb162ec40ddc358be5f9741f943adf66803ccc520c0cf30c3

File: ./contracts/interfaces/INFT.sol
SHA3: 3f78171b773a5e82af3583924b44eb4c8853834d06b7e1bb7c1d1ce397e709eb

File: ./contracts/interfaces/IWeth.sol
SHA3: 3e601d1e9768163d66a7ebae868159f5d5e1fd577f9b782afd01ae5e79815b25

File: ./contracts/libraries/NFTHelper.sol
SHA3: 1970c2e923fecda23801f342d936a0dc0e27307113fbca42ad25a7cb8894b606

File: ./contracts/libraries/TransferHelper.sol
SHA3: a4c52f61119573948db2184f0ab0b1a34e17a29e7c72832372393de6f506b0a1

Second review scope
Repository:

https://github.com/hedgey-finance/HedgeyDAOSwap
Commit:

39ded6c7b6908c811a80be47142b5ac4d6b717aa
Documentation:

Functional requirements and technical description

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/HedgeyDAOSwap.sol
SHA3: 8906f0081675a05fb162ec40ddc358be5f9741f943adf66803ccc520c0cf30c3

File: ./contracts/interfaces/INFT.sol
SHA3: 3f78171b773a5e82af3583924b44eb4c8853834d06b7e1bb7c1d1ce397e709eb

File: ./contracts/interfaces/IWeth.sol
SHA3: 3e601d1e9768163d66a7ebae868159f5d5e1fd577f9b782afd01ae5e79815b25

File: ./contracts/libraries/NFTHelper.sol
SHA3: 1970c2e923fecda23801f342d936a0dc0e27307113fbca42ad25a7cb8894b606

www.hacken.io
4

https://github.com/hedgey-finance/HedgeyDAOSwap/blob/main/Documentation/Hedgey%20DAO%20Swap%20Technical%20Documentation.pdf
https://github.com/hedgey-finance/HedgeyDAOSwap/blob/main/Documentation/Hedgey%20DAO%20Swap%20Technical%20Documentation.pdf

File: ./contracts/libraries/TransferHelper.sol
SHA3: 9a5f4a64785e8b7301f77221a3d4a6c320ca3140798077846bbf63ffceda71d8

www.hacken.io
5

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10. Functional
requirements and technical description are provided and comprehensive.

Code quality
The total Code Quality score is 10 out of 10. The code structure follows
the official language style guides; the contracts are annotated with the
NatSpec comments. The development environment is provided, there are
instructions on how to compile, build and deploy the code.

Test coverage
Deployment and basic user interactions are covered with tests. Negative
cases coverage is present, and interaction by several users is tested.
Test coverage of the project is 100%.

Security score
As a result of the audit, the code contains 1 low severity issue. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

21 September 2022 1 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization SWC-115 tx.origin should not be used for Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115

through
tx.origin

authorization.

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Failed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain identifier
should always be used. All parameters
from the signature should be used in
signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Not Relevant

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Not Relevant

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

Gas Limit and
Loops Custom Transaction execution costs should not

depend dramatically on the amount of Not Relevant

www.hacken.io
9

https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
10

System Overview

Hedgey DAO SWAP is a swap/locking system with the following contracts:
● HedgeyDAOSwap — is a contract that allows tokens swapping and

locking.

The functionality of the contract allows users to initiate the swap
by defining the following swap parameters:

○ Token A address;
○ Token B address;
○ Amount A;
○ Amount B;
○ Unlock date;
○ Executor address;
○ NFT locker address;

The token A in the amount A is transferred from the swap initiator to
the contract balance.

Then the defined executor address can execute the swap:

○ If the unlock date is bigger than the current time, the token B
in the amount B is transferred from the swap executor to the
contract; token B in the amount B is locked in the NFT locker,
minting an NFT to the swap initiator, and token A in the amount
A is locked in the NFT locker, minting an NFT to the swap
executor. (NFT locker is out of audit scope)

○ If the unlock date is less than the current time, the token A
sent by the swap initiator is transferred to the swap executor,
token B in the amount B is transferred from the swap executor
to the swap initiator.

The swap initiator can cancel the swap before its execution.
● NFTHelper — is a library that contains the helper function for

locking tokens in the NFT locker contract, used in the HedgeyDAOSwap
contract.

● TransferHelper — is a library that contains the collection of
functions that help to transfer ERC-20 tokens, handle ETH wrapping
and unwrapping of WETH, used in the HedgeyDAOSwap contract.

● INFT — is an interface for the NFT locker contract, used in the
NFTHelper library.

● IWeth — is an interface for WETH, used in the TransferHelper library.

Risks
● The NFT locker address is defined by the swap initiator and its

matching with the correct NFT locker contract can not be verified.

www.hacken.io
11

NFT locker contract is out of audit scope. Therefore, the secureness
of token locking and NFT minting functionality can not be guaranteed.

www.hacken.io
12

Findings

Critical

No critical severity issues were found.

High

No high severity issues were found.

Medium

1. Unfinalized code

The TransferHelper library imports 'hardhat/console.sol' for
debugging purposes.

This may indicate that the code is not finalized.

Path: ./contracts/libraries/TransferHelper.sol

Recommendation: Remove the debugging import.

Status: Fixed (Revised commit:
39ded6c7b6908c811a80be47142b5ac4d6b717aa)

Low

1. Block values as a proxy for time using

The contract uses block.timestamp for time calculations. It is not
precise and safe.

Paths: ./contracts/HedgeyDAOSwap.sol : initSwap(), executeSwap();
./contracts/libraries/NFTHelper.sol : lockTokens()

Recommendation: It is recommended to avoid using block.timestamp in
the time calculations. Alternatively, it is safe to use oracles.

Status: Reported

www.hacken.io
13

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Сonsultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
14

