
Customer: LunaFi_Technologies_Ltd
Date: September 9, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
LunaFi_Technologies_Ltd

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type ERC20 token; Token pool

Platform EVM

Network Ethereum

Language Solidity

Methods Manual Review, Automated Review, Architecture Review

Website https://www.lunafi.io/

Timeline 05.07.2022 – 05.09.2022

Changelog
20.07.2022 – Initial Review
11.08.2022 - Second Review
09.09.2022 - Third Review

www.hacken.io
2

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12

Disclaimers 18

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by LunaFi_Technologies_Ltd (Customer)
to conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/Luna-Fi/lunafi-smart-contracts-v2/tree/audit-branch
Commit:

8c76790967a9e3083876a26e4b84db0ffc092fa6
Technical Documentation:

Type: Whitepaper (partial functional requirements provided)
Link

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/HousePool.sol
SHA3: ff7dd3b8bb361dcf6617995718b188b94fb07c9de2e2d7e1a133bd0a704489eb

Second review scope
Repository:

https://github.com/Luna-Fi/lunafi-smart-contracts-v2/tree/audit-branch
Commit:

ddf40ccf1aeb82e9f937744702b58a068db64710
Technical Documentation:

Type: Whitepaper (partial functional requirements provided)
Link

Type: Documentation
Link

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/HousePool.sol
SHA3: 005c6552b6e2a7b65a29530763a00a990d4b575e79c902a0c1d95eafaea8a297

Third review scope
Repository:

https://github.com/Luna-Fi/lunafi-smart-contracts-v2/tree/audit-branch
Commit:

b27c8ee69ab8c47cac320730c6f19f9ce391d0b4
Technical Documentation:

Type: Whitepaper (partial functional requirements provided)
Link

Type: Documentation
Link

www.hacken.io
4

https://lunafi.io/assets/LunaFi_Whitepaper.pdf
https://lunafi.io/assets/LunaFi_Whitepaper_Official.pdf
https://docs.lunafi.io/lunafi/
https://lunafi.io/assets/LunaFi_Whitepaper_Official.pdf
https://docs.lunafi.io/lunafi/

Type: Technical Specification and Audit Responses
Link

Integration and Unit Tests: Yes
Contracts:

File: ./contracts/HousePool.sol
SHA3: 82cb18d91abd6121fcb96131f893f077131703bdf5c75c70bde007778d509983

www.hacken.io
5

https://github.com/Luna-Fi/lunafi-smart-contracts-v2/blob/audit-branch/docs/

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10. Functional
requirements are provided in a whitepaper. A technical description is not
provided. Code is followed by NatSpec comments.

Code quality
The total CodeQuality score is 8 out of 10. Code violates Style guide. Unit
tests were provided. Total test coverage is 78%.

Architecture quality
The architecture quality score is 7 out of 10. Single responsibility
principle is violated.

Security score
As a result of the audit, the code contains 2 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.3.

www.hacken.io
7

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization SWC-115 tx.origin should not be used for Not Relevant

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115

through
tx.origin

authorization.

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain identifier
should always be used. All parameters
from the signature should be used in
signer recovery

Failed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

Gas Limit and
Loops Custom Transaction execution costs should not

depend dramatically on the amount of Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Style guide
violation Custom Style guides and best practices should

be followed. Failed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Failed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
10

System Overview

HousePool is a token pool with the following contract:
● HousePool.sol - a contract with logic for working with a token pool.

Contract performs calculations and implements external calls to other
token contracts.

Privileged roles
● MANAGER_ROLE can get a sports book contract, set and get a cooldown

active state.
● DATA_PROVIDER_ORACLE can update values of interest.
● STAKING_MANAGER can set an unstake window, cooldown seconds and

reward per second.

Risks
● Contract performs external calls to token contracts that are not

included in the audit scope. This report can evaluate security only
for contracts included in the scope.

www.hacken.io
11

Findings

Critical

1. Non-finalized code

The code contains commented code parts and TODO statements. Due to
this, contract logic seems unfinished, and additional changes will be
introduced in the future.

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: storeBets (line 716), settleBets (lines 767, 775, 780),
updateBets (lines 738, 739)

Recommendation: Finalize code logic and remove TODO statements.

Status: Fixed (revised commit: ddf40cc)

2. Requirements violation

The code violates the requirements provided by the Customer. In the
documentation, totalValueLocked is counted by formula “Liquidity +
Expected value of pending bets - Pending stakes - Pending
commission”, while in code, Pending commission is absent.

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: stake, updateAttributes, _updateTVL

Recommendation: Implement the code according to requirements.

Status: Fixed (revised commit: ddf40cc)

High

1. Highly permissive role access

Owner can change unstakeWindowTime, cooldownSeconds, rewardPerSecond
and cooldownActiveState. Such permissions should be properly and in
detail described in the documentation, so the users will be notified
about such functionality.

This can lead to users' fund manipulations.

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: stake, unstake, claimRewards, settleBets

Recommendation: Add highly permissive functionality to documentation.

Status: Fixed (revised commit: b27c8ee)

www.hacken.io
12

2. Stack overflow possibility

The code performs a large number of multiplications and
exponentiations of large numbers. Given that the contract often uses
the int256 data type, there is a possibility that there will be a
stack overflow and function execution revert.

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: stake, unStake, getMaxWithdrawal

Recommendation: If possible, use uint256 instead of int256 or store
data in a few values.

Status: Mitigated (with Customer’s notice)

3. Denial of service vulnerability

Loop in function settleBets performs external calls. Iterating over
large structures and performing external calls in loops may lead to
out-of-Gas exceptions.

File: ./contracts/HousePool.sol

Contract: HousePool

Function: settleBets

Recommendation: Implement size limitations and avoid external calls
inside a loop.

Status: Fixed (revised commit: b27c8ee)

Medium

1. Unchecked token transfer

Contract does not check the return result of ERC20 token transfer. In
case of this transfer failure, the function keeps running. ERC20
transfer functions return bool after transfers, and it is important
to implement a return value check for this return value.

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: stake, unstake, claimRewards, settleBets

Recommendation: Implement a return value check for token transfers.

Status: Fixed (revised commit: b27c8ee)

2. Unoptimized loops usage

Contract reads and modifies state variables inside a loop. Loops are
unoptimized, and their usage can lead to high Gas taxes.

File: ./contracts/HousePool.sol
www.hacken.io

13

Contract: HousePool

Functions: storeBets, updateBets, settleBets

Recommendation: Cache arrays in a loop, save state variables to local
memory, iterate the loop and save changes to the state after the loop
finishes.

Status: Fixed (revised commit: b27c8ee)

3. Reusable signatures

Contract uses signatures to authenticate users. After a signature is
used, anyone will be able to interact with the contract by repeating
the function call with the same signature.

This can lead to users' fund manipulations.

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: -

Recommendation: Add functionality to make every signature unique.

Status: Mitigated (with Customer’s notice)

4. Code simplification possibility

Contract declares some variables private, but there are external
getter functions for these variables. If such variables are declared
public, such functions will be declared automatically. This will save
Gas and make code cleaner and easier to read.

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: getRewardPerSecond, getCooldownSeconds,
getUnstakeWindowTime, getPoolName, getPendingStakesValue,
getTotalValueLocked, getLPTokenPrice, getLiquidityStatus

Recommendation: Declare variables as public and remove getter
functions.

Status: Fixed (revised commit: ddf40cc)

5. Redundant logic

Logical checks that duplicate the logic of the previous statements or
do not perform any validation can be removed to save Gas.

File: ./contracts/HousePool.sol

Contract: HousePool

Function: verify

Recommendation: Remove redundant logic.

www.hacken.io
14

Status: Fixed (revised commit: b27c8ee)

Low

1. State variables' default visibility

Specifying state variables' visibility helps to catch incorrect
assumptions about who can access the variable.

This makes the contract`s code quality and readability higher.

File: ./contracts/HousePool.sol

Contract: HousePool

Variables: MAX_PRECISION, bets, farmInfo

Recommendation: Specify variables as public, internal, or private.
Explicitly define visibility for all state variables.

Status: Fixed (revised commit: ddf40cc)

2. Functions can be declared external

Public functions that are never called by the contract should be
declared external to save Gas.

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: getRewards, setCoolDownActiveState,
getCoolDownActiveState, storeBets, updateBets, settleBets

Recommendation: Declare mentioned functions as external.

Status: Fixed (revised commit: ddf40cc)

3. Missing zero address validation

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: initialize, setSportsBookContract, permitAndStake, stake,
claimRewards

Recommendation: Implement a zero address check.

Status: Fixed (revised commit: ddf40cc)

4. Boolean equality

Boolean constants can be used directly and do not need to be compared
to true or false.

www.hacken.io
15

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: stake, unStake, activateCooldown,
getNextCooldownTimestamp, updateBets, _transfer

Recommendation: Remove boolean equality.

Status: Fixed (revised commit: ddf40cc)

5. Redundant pragma statement

Pragma ABIEncoderV2 will be activated by default starting from
Solidity 0.8.0.

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: -

Recommendation: Remove redundant statement.

Status: Fixed (revised commit: ddf40cc)

6. Redundant conversion

Some code parts implement data type conversion when converting
uint256 to int256 even if the result value cannot drop under zero.

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: -

Recommendation: Remove redundant conversions.

Status: Mitigated (with Customer’s notice)

7. Invalid event emit values

Event UnStaked is emitted with information about the address that
unstakes tokens, the address which receives the tokens, and the
tokens amount. However, in event emitting, no matter what, both
unstaker and receiver are msg.sender.

File: ./contracts/HousePool.sol

Contract: HousePool

Function: unStake

Recommendation: Change event emitting values.

Status: Fixed (revised commit: ddf40cc)

8. Code optimization possibility

www.hacken.io
16

There is a constant variable in code equal to 10e18. It can be used
instead of all mathematical operations with 10**18.

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: -

Recommendation: Replace mathematical operations with declared
variable.

Status: Fixed (revised commit: b27c8ee)

9. Unused state variables

Some state variables are declared, but never used.

File: ./contracts/HousePool.sol

Contract: HousePool

Variables: bettingStakes, totalPayouts, bets, stakerRewardsToClaim

Recommendation: Remove unused variables.

Status: Fixed (revised commit: ddf40cc)

10. Boolean equality

Boolean constants can be used directly and do not need to be compared
to true or false.

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: claimRewards, settleBet, stake, unStake

Recommendation: Remove boolean equality.

Status: New

11. Redundant import

Contract imports SafeERC20 contract without using it.

File: ./contracts/HousePool.sol

Contract: HousePool

Functions: -

Recommendation: Remove redundant import.

Status: New

www.hacken.io
17

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Сonsultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
18

